Skip to content Skip to navigation

Article: Deciphering the early evolution of echinoderms with Cambrian fossils

Publication: Palaeontology
Volume: 57
Part: 6
Publication Date: November 2014
Page(s): 1105 1119
Author(s): Samuel Zamora and Imran A. Rahman
Addition Information

How to Cite

ZAMORA, S., RAHMAN, I. A. 2014. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology, 57, 6, 1105-1119.

Publication History

  • Samuel Zamora - Instituto Geológico y Minero de España, Zaragoza, Spain (email:
  • Samuel Zamora - Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
  • Imran A. Rahman - School of Earth Sciences, University of Bristol, Bristol, UK (email:

Funded By

Ramón y Cajal. Grant Number: RYC-2012-10576
Spanish Ministry of Economy and Competitiveness. Grant Number: CGL2013-48877
1851 Royal Commission Research Fellowship

Online Version Hosted By

Wiley Online Library (Free Access)
Get Article: Wiley Online Library [Free Access]


  • Bottjer, D. J., Davidson, E. H., Peterson, K. J. and Cameron, R. A. 2006. Paleogenomics of echinoderms. Science, 314, 956–960.
  • Bourlat, S. J., Juliusdottir, T., Lowe, C. J., Freeman, R., Aronowicz, J., Kirschner, M., Lander, E. S., Thorndyke, M., Nakano, H., Kohn, A. B., Heyland, A., Moroz, L. L., Copley, R. R. and Telford, M. J. 2006. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature, 444, 85–88.
  • Budd, G. E. and Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75, 253–295.
  • Cameron, C. B. 2002. Particle retention and flow in the pharynx of the enteropneust worm Harrimania planktophilus: the filter feeding pharynx may have evolved prior to the chordates. Biological Bulletin, 202, 192–200.
  • Cameron, C. B. 2005. A phylogeny of the hemichordates based on morphological characters. Canadian Journal of Zoology, 83, 196–215.
  • Cameron, C. B. and Bishop, C. 2012. Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization‐related proteins in hemichordates. Proceedings of the Royal Society of London, Series B: Biological Sciences, 279, 3041–3048.
  • Clausen, S. and Peel, J. 2012. Middle Cambrian echinoderm remains from the Henson Gletscher Formation of North Greenland. GFF, 134, 173–200.
  • Clausen, S. and Smith, A. B. 2005. Palaeoanatomy and biological affinities of a Cambrian deuterostome (Stylophora). Nature, 438, 351–354.
  • Clausen, S. and Smith, A. B. 2008. Stem structure and evolution in the earliest pelmatozoan echinoderms. Journal of Paleontology, 82, 737–748.
  • David, B. and Mooi, R. 1999. Comprendre les échinodermes: la contribution du modèle extraxial‐axial. Bulletin de la Société Géologique de France, 170, 91–101.
  • David, B., Lefebvre, B., Mooi, R. and Parsley, R. L. 2000. Are homalozoans echinoderms? An answer from the extraxial–axial theory. Paleobiology, 26, 529–555.
  • Domínguez Alonso, P. 2004. Sistemática, anatomía, estructura y función de Ctenocystoidea (Echinodermata, Carpoidea) del Paleozoico Inferior. Published PhD thesis, Universidad Complutense de Madrid, Madrid, 538 pp.
  • Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., Seaver, E., Rouse, G. W., Obst, M., Edgecombe, G. D., Sørensen, M. V., Haddock, S. H. D., Schmidt‐Rhaesa, A., Okusu, A., Kristensen, R. M., Wheeler, W. C., Martindale, M. Q. and Giribet, G. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–750.
  • Durham, J. W. and Caster, K. E. 1963. Helicoplacoidea: a new class of echinoderms. Science, 140, 820–822.
  • Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334, 1091–1097.
  • Friedrich, W. P. 1993. Systematik und Funktionsmorphologie mittelkambrischer Cincta (Carpoidea, Echinodermata). Beringeria, 7, 3–190.
  • Gehling, J. G. 1987. Earliest known echinoderm – a new Ediacaran fossil from the Pound Subgroup of South Australia. Alcheringa, 11, 337–345.
  • Gonzalez, P. and Cameron, C. B. 2009. The gill slits and pre‐oral ciliary organ of Protoglossus (Hemichordata: Enteropneusta) are filter‐feeding structures. Biological Journal of the Linnean Society, 98, 898–906.
  • Gorzelak, P. and Zamora, S. 2013. Stereom microstructures of Cambrian echinoderms revealed by cathodoluminescence (CL). Paleontologia Electronica, 16 (3), 32A.
  • Guensburg, T. E. and Sprinkle, J. 2009. Solving the mystery of crinoid ancestry: new fossil evidence of arm origin and development. Journal of Paleontology, 83, 350–364.
  • Janies, D. A., Voight, J. R. and Daly, M. 2011. Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Systematic Biology, 60, 420–438.
  • Jefferies, R. P. S. 1968. The subphylum Calcichordata (Jefferies 1967). Primitive fossil chordates with echinoderm affinities. Bulletin of the British Museum (Natural History), Geology, 16, 243–339.
  • Jefferies, R. P. S. 1986. The ancestry of the vertebrates. British Museum (Natural History), London, 376 pp.
  • Jefferies, R. P. S. 1990. The solute Dendrocystoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. Palaeontology, 33, 631–679.
  • Jefferies, R. P. S. 1997. A defence of the calcichordates. Lethaia, 30, 1–10.
  • Jefferies, R. P. S., Brown, N. A. and Daley, P. E. J. 1996. The early phylogeny of chordates and echinoderms and the origin of chordate left–right asymmetry and bilateral symmetry. Acta Zoologica, 77, 101–122.
  • Kammer, T. W., Sumrall, C. D., Zamora, S., Ausich, W. I. and Deline, B. 2013. Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PLoS One, 8, e77989.
  • Kouchinsky, A., Bengtson, S., Runnegar, B., Skovsted, C., Steiner, M. and Vendrasco, M. 2012. Chronology of early Cambrian biomineralization. Geological Magazine, 149, 221–251.
  • Lefebvre, B. 2000. Homologies in Stylophora: a test of the ‘calcichordate theory’. Geobios, 33, 359–364.
  • Lefebvre, B. 2003. Functional morphology of stylophoran echinoderms. Palaeontology, 46, 511–555.
  • Lefebvre, B. and Vizcaino, D. 1999. New Ordovician cornutes (Echinodermata, Stylophora) from Montagne Noire and Brittany (France) and a revision of the Order Cornuta Jaekel 1901. Geobios, 32, 421–458.
  • Mallatt, J. and Winchell, C. J. 2007. Ribosomal RNA genes and deuterostome phylogeny revisited: more cyclostomes, elasmobranchs, reptiles, and a brittle star. Molecular Phylogenetics & Evolution, 43, 1005–1022.
  • Mooi, R. and David, B. 1998. Evolution within a bizarre phylum: homologies of the first echinoderms. American Zoologist, 38, 965–974.
  • Nichols, D. 1972. The water‐vascular system in living and fossil echinoderms. Palaeontology, 15, 519–538.
  • Noailles, F., Lefebvre, B. and Kašička, L. 2014. A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938. Bulletin of Geosciences, 89, 451–476.
  • Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: non Calcichordata. Paleontological Society Papers, 3, 225–248.
  • Parsley, R. L. 1999. The Cincta (Homostelea) as blastozoans. 369–375. In Candia Carnevali, M. D. and Bonasoro, F. (eds). Echinoderm research 1998. Balkema, Rotterdam, 550 pp.
  • Parsley, R. L. and Sumrall, C. D. 2007. New recumbent echinoderm genera from the Bois d'Arc Formation: Lower Devonian (Lochkovian) of Coal County, Oklahoma. Journal of Paleontology, 81, 1486–1493.
  • Parsley, R. L., Rozhnov, S. V. and Sumrall, C. D. 2012. Morphologic and systematic revision of the solute Maennilia estonica (Homoiostelea, Echinodermata) from the Upper Ordovician of Estonia. Journal of Paleontology, 86, 462–469.
  • Paul, C. R. C. 1977. Evolution of primitive echinoderms. 123–158. In Hallam, A. (ed.). Patterns of evolution as illustrated by the fossil record. Elsevier, Amsterdam, 591 pp.
  • Paul, C. R. C. and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59, 443–481.
  • Peterson, K. J. 1995. A phylogenetic test of the calcichordate scenario. Lethaia, 28, 25–38.
  • Peterson, K. J., Cotton, J. A., Gehling, J. G. and Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 363, 1435–1443.
  • Philip, G. M. 1979. Carpoids – echinoderms or chordates? Biological Reviews, 54, 439–471.
  • Philippe, H., Brinkmann, H., Copley, R. R., Moroz, L. L., Nakano, H., Poustka, A. J., Wallberg, A., Peterson, K. J. and Telford, M. J. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470, 255–258.
  • Rahman, I. A. and Clausen, S. 2009. Re‐evaluating the palaeobiology and affinities of the Ctenocystoidea (Echinodermata). Journal of Systematic Palaeontology, 7, 413–426.
  • Rahman, I. A. and Zamora, S. 2009. The oldest cinctan carpoid (stem‐group Echinodermata) and the evolution of the water vascular system. Zoological Journal of the Linnean Society, 157, 420–432.
  • Rahman, I. A., Jefferies, R. P. S., Südkamp, W. H. and Smith, R. D. A. 2009. Ichnological insights into mitrate palaeobiology. Palaeontology, 52, 127–138.
  • Robison, R. A. and Sprinkle, J. 1969. Ctenocystoidea: new class of primitive echinoderms. Science, 166, 1512–1514.
  • Ruta, M. 1999a. Brief review of the stylophoran debate. Evolution & Development, 1, 123–135.
  • Ruta, M. 1999b. A cladistic analysis of the anomalocystitid mitrates. Zoological Journal of the Linnean Society, 127, 345–421.
  • Smith, A. B. 1984. Classification of the Echinodermata. Palaeontology, 27, 431–459.
  • Smith, A. B. 2005. The pre‐radial history of echinoderms. Geological Journal, 40, 255–280.
  • Smith, A. B. 2008. Deuterostomes in a twist: the origins of a radical new body plan. Evolution & Development, 10, 493–503.
  • Smith, A. B. and Zamora, S. 2009. Rooting phylogenies of problematic fossil taxa; a case study using cinctans (stem‐group echinoderms). Palaeontology, 52, 803?831.
  • Smith, A. B. and Zamora, S. 2013. Cambrian spiral‐plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proceedings of the Royal Society of London, Series B: Biological Sciences, 280, 20131197.
  • Smith, A. B., Zamora, S. and Alvaro, J. J. 2013. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications, 4, 1385.
  • Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Harvard University Museum of Comparative Zoology, Cambridge, MA, 288 pp.
  • Sprinkle, J. and Wilbur, B. 2005. Deconstructing helicoplacoids: revising the most enigmatic Cambrian echinoderms. Geological Journal, 40, 281–293.
  • Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata. 267–288. In Waters, J. A. and Maples, C. G. (eds). Geobiology of echinoderms. Paleontological Society Papers, 3, 355 pp.
  • Sumrall, C. D. 2008. The origin of Lovén's Law in glyptocystitoid rhombiferans and its bearing on the plate homology and the heterochronic evolution of the hemicosmitid peristomial border. 228–241. In Ausich, W. I. and Webster, G. D. (eds). Echinoderm paleobiology. University of Indiana Press, Bloomington, 456 pp.
  • Sumrall, C. D. 2010. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms. 269–276. In Harris, L. G., Böttger, S. A., Walker, C. W. and Lesser, M. P. (eds). Echinoderms: Durham. CRC Press, London 679 pp.
  • Sumrall, C. D. and Brett, C. E. 2002. A revision of Novacystis hawkesi Paul and Bolton 1991 (Middle Silurian: Glyptocystitida, Echinodermata) and the phylogeny of early callocystitids. Journal of Paleontology, 76, 733–740.
  • Sumrall, C. D. and Waters, J. A. 2012. Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived Blastozoa. Journal of Paleontology, 86, 956–972.
  • Sumrall, C. D. and Wray, G. A. 2007. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33, 149–163.
  • Sumrall, C. D. and Zamora, S. 2011. Ordovician edrioasteroids from Morocco: faunal exchanges across the Rheic Ocean. Journal of Systematic Palaeontology, 9, 425–454.
  • Telford, M. J., Lowe, C. J., Cameron, C. B., Ortega‐Martinez, O., Aronowicz, J., Oliveri, P. and Copley, R. R. 2014. Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proceedings of the Royal Society of London, Series B: Biological Sciences, 281, 20140479.
  • Ubaghs, G. 1968a. Stylophora. S495–S565. In Moore, R. C. (ed.). Treatise on invertebrate paleontology. Part S, Echinodermata 1 (2). Geological Society of America, New York, and University of Kansas, Lawrence, 650 pp.
  • Ubaghs, G. 1968b. Eocrinoidea. S455–S495. In Moore, R. C. (ed.). Treatise on invertebrate paleontology. Part S, Echinodermata 1 (2). Geological Society of America, Boulder, CO, and University of Kansas, Lawrence, KS, 650 pp.
  • Ubaghs, G. 1971. Diversité et spécialisation des plus anciens échinodermes que l'on connaisse. Biological Reviews, 46, 157–200.
  • Ubaghs, G. 1975. Early Paleozoic echinoderms. Annual Review of Earth and Planetary Sciences, 3, 79–98.
  • Zamora, S. 2010. Middle Cambrian echinoderms from North Spain show echinoderms diversified earlier in Gondwana. Geology, 38, 507–510.
  • Zamora, S. 2013. Morphology and phylogenetic interpretation of a new Cambrian edrioasteroid (Echinodermata) from Spain. Palaeontology, 56, 421–431.
  • Zamora, S. and Smith, A. B. 2008. A new Middle Cambrian stem‐group echinoderm from Spain: palaeobiological implications of a highly asymmetric cinctan. Acta Palaeontologica Polonica, 53, 207–220.
  • Zamora, S. and Smith, A. B. 2010. The oldest isorophid edrioasteroid (Echinodermata) and the evolution of attachment strategies in Cambrian edrioasteroids. Acta Palaeontologica Polonica, 55, 487–494.
  • Zamora, S. and Smith, A. B. 2012. Cambrian stalked echinoderms show unexpected plasticity of arm construction. Proceedings of the Royal Society of London, Series B: Biological Sciences, 279, 293–298.
  • Zamora, S., Rahman, I. A. and Smith, A. B. 2012. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One, 7, e38296.
  • Zamora, S., Lefebvre, B., Álvaro, J. J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinski, A., Lin, J.‐P., Nardin, E., Parsley, R., Rozhnov, S., Sprinkle, J., Sumrall, C. D., Vizcaïno, D. and Smith, A. B. 2013a. Global Cambrian echinoderm diversity and palaeobiogeography. 151–164. In Harper, D. A. T. and Servais, T. (eds). Early Palaeozoic biogeography and palaeogeography. Geological Society, London, Memoirs, 38, 490 pp.
  • Zamora, S., Sumrall, C. D. and Vizcaïno, D. 2013b. Morphology and ontogeny of the Cambrian edrioasteroid echinoderm Cambraster cannati from western Gondwana. Acta Palaeontologica Polonica, 58, 545–559.
  • Zamora, S., Rahman, I. A. and Smith, A. B. 2013c. The ontogeny of cinctans (stem‐group Echinodermata) as revealed by a new genus, Graciacystis, from the Middle Cambrian of Spain. Palaeontology, 56, 399–410.
  • Zhao, Y. L., Sumrall, C., Parsley, R. L. and Peng, J. 2010. Kailidiscus, a new plesiomorphic edrioasteroid from the basal Middle Cambrian Kaili Biota of Guizhou Province, China. Journal of Paleontology, 84, 668–680.
PalAss Go! URL: | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+