Skip to content Skip to navigation

Article: Macroevolution in silico: scales, constraints and universals

Publication: Palaeontology
Volume: 56
Part: 6
Publication Date: November 2013
Page(s): 1327 1340
Author(s): Ricard V. Solé and Sergi Valverde
Addition Information

How to Cite

SOL, R. V., VALVERDE, S. 2013. Macroevolution in silico: scales, constraints and universals. Palaeontology56, 6, 1327–1340.

Online Version Hosted By

Wiley Online Library
Get Article: Wiley Online Library [Pay-to-View Access] |

References

  • Adami, C. 1998. Introduction to artificial life. Springer Verlag, New York, 374 pp.
  • Adami, C. 1999. Self-organized criticality in living systems. Physics Letters, 203, 23–27.
  • Adami, C. 2006. Digital genetics: unravelling the genetic basis of evolution. Nature Reviews Genetics, 7, 109–118.
  • Adami, C. and Brown, C. T. 1994. Evolutionary Learning in the 2D Artificial Life Systems Avida. 377–381. In Brooks, R. A. and Maes, P. (eds). Proceedings of Artificial Life IV: Proceeding of the Fourth International Workshop in the Synthesis and Simulation of Living Systems. MIT Press, Cambridge, MA, 345 pp.
  • Ball, P. 2004. Critical mass. Arrow Books, London, 528 pp.
  • Barricelli, N. 1962. Numerical testing of evolutionary theories I. Acta Biotheoretica, 16, 69–98.
  • Barricelli, N. 1963. Numerical testing of evolutionary theories II. Acta Biotheoretica, 16, 99–126.
  • Benton, M. 1987. Progress and competition in macroevolution. Biological Reviews, 62, 305–338.
  • Carroll, S. B. 2000. Towards a new evolutionary synthesis. Trends in Ecology and Evolution, 15, 27–32.
  • Carroll, S. B. 2001. Chance and necessity: the evolution of morphological complexity and diversity. Nature, 409, 1102–1109.
  • Carroll, S. B. 2005. Endless forms most beautiful: the new science of evo devo and the making of the animal kingdom. Norton and Co, New York, 350 pp.
  • Chow, S. S., Wilke, C. O., Ofria, C., Lenski, R. E. and Adami, C. 2004. Adaptive radiation from resource competition in digital organisms. Science, 305, 84–86.
  • Conway Morris, S. 2003. Life's solution. Cambridge University Press, Cambridge, 463 pp.
  • Crutchfield, J. 2003. When evolution is revolution. 101–133. In Crutchfield, J. and Schuster, P. (eds). Evolutionary dynamics. Oxford University Press, New York, 452 pp.
  • Crutchfield, J. and Schuster, P. (eds) 2003. Evolutionary dynamics. Oxford University Press, New York, 452 pp.
  • Doursat, R. 2008. Organically Grown Architectures: creating Decentralized, Autonomous Systems by Embryomorphic Engineering. 167–200. In Würtz, R. P. (ed.). Organic computing. Springer-Verlag, Berlin, 312 pp.
  • Dyson, G. 1998. Darwin among the machines. Basic Books, New York, 304 pp.
  • Dyson, G. 2012. Turing's cathedral. Pantheon Books, New York, 432 pp.
  • Eble, G. 1998. The role of development in evolutionary radiations. 132–161. In McKinney, M. L. and Drake, J. A. (eds). Biodiversity dynamics. Columbia University Press, New York, 522 pp.
  • Eggenberger, P. 1997. Evolving morphologies of simulated 3D organisms based on differential gene expression. 205–213. In Husbands, I. and Harvey, P. (eds). Proceedings of the Fourth European Conference on Artificial Life. MIT Press, Cambridge, MA, 600 pp.
  • Eigen, M. and Schuster, P. 1977. A principle of natural self-organization. Naturwissenschaften, 64, 541–656.
  • Eldredge, N. 1989. Unfinished synthesis: biological hierarchies and modern evolutionary thought. Oxford University Press, New York, 256 pp.
  • Elena, S. F., Cooper, V. S. and Lenski, R. E. 1996. Punctuated evolution caused by selection of rare beneficial mutations. Science, 272, 1802–1804.
  • Elena, S. F., Cooper, V. S. and Lenski, R. E. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Reviews Genetics, 4, 457–469.
  • Erwin, D. H. 2000. Macroevolution is more than repeated rounds of microevolution. Evolution and Development, 2, 78–84.
  • Erwin, D. H. 2008. Macroevolution of ecosystem engineering, niche construction and diversity. Trends in Ecology and Evolution, 23, 304–310.
  • Erwin, D. H., Laflamme, M., Tweedt, S. M. and Sperling, E. A. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334, 1091–1097.
  • Fedonkin, M. A. 2007. The rise of animals: evolution and diversification of the kingdom Animalia. John Hopkins University Press, Baltimore, 344 pp.
  • Fontana, W. and Schuster, P. 1998. Continuity in evolution: on the nature of transitions. Science, 280, 1451–1455.
  • Forgacs, G. and Newman, S. A. 2005. Biological physics of the developing embryo. Cambridge University Press, Cambridge, 346 pp.
  • Freitas, R. A. and Merkle, R. C. 2004. Kinematic self-replicating machines. Landes Bioscience, 341 pp.
  • Glazier, J. A. and Graner, F. 1993. Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E, 47, 2128–2154.
  • Gould, S. J. 2002. The structure of evolutionary biology. Harvard University Press, Cambridge, MA, 1464 pp.
  • Graner, F. and Glazier, J. A. 1992. Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical Review Letters, 69, 2013–2016.
  • Hamilton, W. D., Axelrod, R. and Tanese, R. 1990. Sexual reproduction as an adaptation to resist parasites (A Review). Proceedings of the National Academy of the United States of America, 87, 3566–3573.
  • Hillis, W. D. 1990. Coevolving parasites improve simulated evolution as an optimization procedure. Physica D: Nonlinear Phenomena, 42, 228–234.
  • Hogeweg, P. 2000a. Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. Journal of Theoretical Biology, 203, 317–333.
  • Hogeweg, P. 2000b. Shapes in the shadow: evolutionary dynamics of morphogenesis. Artificial Life, 6, 85–101.
  • Holland, J. H. 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge, MA, 211 pp.
  • Hraber, P. and Milne, B. 1997. Community Assembly in a model Ecosystem. Ecological Modeling, 103, 267–285.
  • Huynen, M. A., Stadler, P. F. and Fontana, W. 1996. Smoothness within ruggedness: the role of neutrality in adaptation. Proceedings of the National Academy of the United States of America, 93, 397–401.
  • Johnson, M. T. J. and Stinchcombe, J. R. 2007. An emerging synthesis between community ecology. Trends in Ecology and Evolution, 22, 250–257.
  • Jones, C. G., Lawton, J. M. and Shachak, M. 1994. Organisms as ecosystem engineers. Oikos, 69, 373–386.
  • Kauffman, S. A. 1989. Cambrian explosion and Permian quiescence: implications of rugged fitness landscapes. Evolutionary Ecology, 3, 274–282.
  • Kauffman, S. A. 1993. The origins of order: self organization and selection in evolution. Oxford University Press, New York, 709 pp.
  • Kauffman, S. A. and Levin, S. 1987. Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology, 128, 11–45.
  • Kutschera, U. and Niklas, K. 2004. The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften, 91, 255–276.
  • Langton, C. G. (ed.) 1995. Artificial life: an overview. MIT Press, Cambridge, MA, 336 pp.
  • Lenski, R. E. and Travisano, M. 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proceedings of the National Academy of the United States of America, 91, 6808–6814.
  • Lenski, R. E., Ofria, C., Pennock, R. T. and Adami, C. 2003. The evolutionary origin of complex features. Nature, 423, 139–144.
  • Macia, J. and Solé, R. V. 2009. Distributed robustness in cellular networks: insights from synthetic evolved circuits. Journal of the Royal Society Interface, 6, 393–400.
  • Marshall, C. R. 2006. Explaining the Cambrian ‘explosion’ of animals. Annual Review of Earth and Planetary Science, 34, 355–384.
  • Maynard-Smith, J. and Szathmary, E. 1995. The major transitions in evolution. Oxford University Press, Oxford, 360 pp.
  • McShea, D. W. 2001. The hierarchical structure of organisms: a scale and documentation of a trend in the maximum. Paleobiology, 27, 405–423.
  • Nee, S. 2006. Birth-and-death models in macroevolution. Annual Review of Ecology, Evolution and Systematics, 37, 1–17.
  • Newman, S. A. and Bhat, R. 2008. Dynamical patterning modules: physico-genetic determinants of morphological development and evolution. Physical Biology, 5, 015008.
  • Newman, S. A. and Comper, W. D. 1990. Generic physical mechanisms of morphogenesis and pattern formation. Development, 110, 1–18.
  • Newman, M. E. J. and Palmer, R. 2003. Modelling extinction. Oxford University Press, New York, 120 pp.
  • Niklas, K. 1994. Morphological evolution through complex domains of fitness. Proceedings of the National Academy of the United States of America, 91, 6772–6779.
  • Niklas, K. 1997. The evolutionary biology of plants. University of Chicago Press, Chicago, 470 pp.
  • Niklas, K. 2004. Computer models of early land evolution. Annual Review of Earth and Planetary Sciences, 32, 47–66.
  • Nimwegen, E., Crutchfield, J. P. and Huynen, M. 1999. Neutral evolution of mutational robustness. Proceedings of the National Academy of the United States of America, 96, 9716–9720.
  • Odell, G. M., Oster, G., Alberch, P. and Burnsdie, B. 1981. The mechanical basis of morphogenesis. Developmental Biology, 85, 446–462.
  • Podgorski, G. J., Bansal, M. and Flann, N. S. 2007. Regular mosaic pattern development: a study of the interplay between lateral inhibition, apoptosis and differential adhesion. Theoretical Biology and Medical Modelling, 4, 43–63.
  • Prusinkiewicz, P. and Lindenmayer, A. 1990. The algorithmic beauty of plants. Springer-Verlag, New York, 244 pp.
  • Raman, K. and Wagner, A. 2012. The evolvability of programmable hardware. Journal of the Royal Society Interface, 55, 269–281.
  • Ratcliff, W. C., Denison, R. F., Borrello, M. and Travisano, M. 2012. Experimental evolution of multicellularity. Proceedings of the National Academy of the United States of America, 109, 1595–1600.
  • Ray, T. S. 1991. An approach to the synthesis of life. 371–408. In Langton, C., Taylor, C. and Farmer, D. (eds). Artificial Life II, Redwood City, 880 pp.
  • Ray, T. S. 1994. Evolution, complexity, entropy and artificial reality. Physica D: Nonlinear Phenomena, 75, 239–263.
  • Ray, T. S. 1998. Selecting naturally for differentiation: preliminary evolutionary results. Complexity, 3, 25–33.
  • Roopnarine, P. D. 2006. Extinction cascades and catastrophe in ancient food webs. Paleobiology, 32, 1–19.
  • Savill, N. J. and Hogeweg, P. 1997. Modeling morphogenesis: from single cells to crawling slugs. Journal of Theoretical Biology, 184, 229–235.
  • Schnell, S., Grima, R. and Maini, P. 2007. Multiscale modeling in biology. American Scientist, 95, 134–142.
  • Schuster, P. 1995. How does complexity arise in evolution? Complexity, 2, 22–30.
  • Schuster, P., Fontana, W., Stadler, P. F. and Hofacker, I. L. 1994. From sequences to shapes and back: a case study in RNA secondary structures. Proceedings of the Royal Society of London, Series B, 255, 279–284.
  • Sims, K. 1994a. Evolving virtual creatures. 15–22. SIGGRAPH ‘94 Proceedings of the 21st Annual Conference on Computer Graphics. ACM, New York, 214 pp.
  • Sims, K. 1994b. Evolving 3D morphology and behavior by competition. Artificial life, 1, 353–372.
  • Sipper, M. 1998. Fifty years of research on self-replication: an overview. Artificial Life, 4, 237–257.
  • Smith, R. M. and Bedau, M. A. 2000. Is Echo a complex adaptive system? Evolutionary Computation, 8, 419–442.
  • Solé, R. V. 2011. Phase transitions. Princeton University Press, Princeton, 264 pp.
  • Sole, R. V. and Bascompte, J. 2007. Self-organization in complex ecosystems. Princeton University Press, Princeton, 392 pp.
  • Sole, R. V. and Valverde, S. 2013. Before the endless forms: embodied model of transition from single cells to aggregates to ecosystem engineering. PLoS One, 8, e59664.
  • Sole, R. V., Montoya, J. and Erwin, D. H. 2002. Recovery after mass extinction: evolutionary assembly in large–scale biosphere dynamics. Philosophical Transactions of the Royal Society of London, Series B, 357, 697–707.
  • Sole, R. V., Fernandez, P. and Kauffman, S. A. 2003. Adaptive walks in a gene network model of morphogenesis: insights into the Cambrian explosion. International Journal of Developmental Biology, 47, 685–693.
  • Sole, R. V., Saldanya, J., Montoya, J. M. and Erwin, D. H. 2010. Simple model of recovery dynamics after mass extinction. Journal of Theoretical Biology, 267, 193–200.
  • Solé, R. V. and Goodwin, B. C. 2001. Signs of life. How complexity pervades biology. Basic Books, New York, 322 pp.
  • Valentine, J. W., Collins, A. G. and Meyer, C. P. 1994. Morphological complexity increase in metazoans. Paleobiology, 20, 131–142.
  • Wilke, C. O. 2001. Adaptive evolution on neutral networks. Bulletin of Mathematical Biology, 63, 715–730.
  • Yedid, G. and Bell, G. 2002. Macroevolution simulated with autonomously replicating computer programs. Nature, 420, 810–812.
  • Yedid, G., Stredwick, J., Ofria, C. A. and Agapow, P.-M. 2012. A comparison of the effects of random and selective mass extinctions on erosion of evolutionary history in communities of digital organisms. PLoS One, 7, e37233.
PalAss Go! URL: http://go.palass.org/5mq | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+