Skip to content Skip to navigation

Article: Chemical taphonomy of biomineralized tissues

Publication: Palaeontology
Volume: 56
Part: 3
Publication Date: May 2013
Page(s): 475 486
Author(s): Clive N. Trueman
Addition Information

How to Cite

TRUEMAN, C. N. 2013. Chemical taphonomy of biomineralized tissues. Palaeontology56, 3, 475–486.

Online Version Hosted By

Wiley Online Library
Get Article: Wiley Online Library [Pay-to-View Access] |


  • Addadi, L., Raz, S. and Weiner, S. 2003. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials, 15, 959–970.
  • Asscher, Y., Weiner, S. and Boaretto, E. 2011. Variations in atomic disorder in biogenic carbonate hydroxyapatite using the infrared spectrum grinding curve method. Advanced Functional Materials, 21, 3308–3313.
  • Balter, V. and Lécuyer, C. 2004. Determination of Sr and Ba partition coefficients between apatite and water from 5°C to 60°C: a potential new thermometer for aquatic palaeoenvironments. Geochimica et Cosmochimica Acta, 68, 423–432.
  • Barfod, G. H., Otero, O. and Albarède, F. 2003. Phosphate Lu–Hf geochronology. Chemical Geology, 200, 241–253.
  • Bartsiokas, A. and Middleton, A. P. 1992. Characterisation and darting of recent and fossil bone by X-ray diffraction. Journal of Archaeological Science, 19, 63–72.
  • Bassinot, F. C., Mélières, F., Gehlen, M., Levi, C. and Labeyrie, L. 2004. Crystallinity of foraminifera shells: a proxy to reconstruct past bottom water CO3 changes? Geochemistry, Geophysics, Geosystems, 5 (12), doi:10.1029/2003GC000668.
  • Beniash, E., Aizenberg, J., Addadi, L. and Weiner, S. 1997. Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proceedings of the Royal Society of London Series B, 264, 461–465.
  • Blundy, J. B. and Wood, B. J. 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372, 452–454.
  • Dumont, M., Kostka, A., Sander, P. M., Borbely, A. and Kaysser-Pyzalla, A. 2011. Size and size distribution of apatite crystals in sauropod fossil bones. Palaeogeography, Palaeoecology, Palaeoclimatology, 310, 108–116.
  • Eggins, S., Grün, R., Pike, A. W. G., Shelly, M. and Taylor, L. 2003. 238U, 232Th profiling and U-series isotope analysis of fossil teeth by laser ablation-ICPMS. Quaternary Science Review, 22, 1373–1382.
  • Fassett, J. E., Heaman, L. M. and Simonetti, A. 2011. Direct U–Pb dating of Cretaceous and Paleocene dinosaur bones, San Juan Basin, New Mexico. Geology, 39, 159–162.
  • Grün, R., Eggins, S., Aubert, M., Spooner, N., Pike, A. W. G. and Muller, W. 2010. ESR and U-series analyses of faunal material from Cuddie Springs, NSW, implications for the timing of the extinction of the Australian megafauna. Quaternary Science Review, 29, 596–610.
  • Herwartz, D., Tütken, T., Munker, C., Jochum, K. P., Stoll, B. and Sander, P. M. 2011. Timescales and mechanisms of REE and Hf uptake in fossil bones. Geochimica et Cosmochimica Acta, 75, 82–105.
  • Herwartz, D., Tütken, T., Hoffmann, J. E., Barbier, B., Munker, C. and Wittke, A. 2013. Lu–Hf isotope systematics of fossil biogenic apatite and their effects on geochronology. Geochimica et Cosmochimica Acta, 101, 328–343.
  • Hobson, K. A. 2009. Tracing origins and migrations of wildlife using stable isotopes: a review. Oecologia, 120, 314–326.
  • Jennings, S., Barnes, C., Sweeting, C. J. and Polunin, N. V. C. 2008. Application of nitrogen stable isotope analysis in size-based marine food web and macroecological research. Rapid Communications in Mass Spectrometry, 22, 1673–1680.
  • Kemp, R. A. and Trueman, C. N. 2003. Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeoenvironment. Sedimentary Geology, 155, 109–127.
  • Kocsis, L., Trueman, C. N. and Palmer, M. R. 2010. Protracted diagenetic alteration of REE contents in fossil biogenic apatites: direct evidence from Lu–Hf isotope systematics. Geochimica et Cosmochimica Acta, 74, 6077–6092.
  • Koenig, E. A., Rogers, R. R. and Trueman, C. N. 2009. Visualizing fossilization using laser ablation–inductively coupled plasma–mass spectrometry maps of trace elements in Late Cretaceous bones. Geology, 37, 511–514.
  • Koenig, E. A., Lucas, S. G., Neymark, L. A., Heckert, A. B., Sullivan, R. M., Jasinski, S. E. and Fowler, D. W. 2012. Direct dating of Cretaceous and Paleocene dinosaur bones, San Juan Basin, New Mexico Comment. Geology, 40, E262.
  • Kohn, M. J. 2008. Models of diffusion-limited uptake of trace elements in fossils and rates of fossilization. Geochimica et Cosmochimica Acta., 72, 3758–3770.
  • Longmore, C., Trueman, C. N., Neat, F., O'gorman, E. J., Milton, J. A. and Mariani, S. 2011. Otolith chemistry indicates life-long spatial structuring in a deep sea fish Coryphaenoides rupestris. Marine Ecology Progress Series, 435, 209–224.
  • MacFadden, B. J., Labs-Hochstein, J., Hulbert, R. C. Jr and Baskin, J. A. 2007. Revised age of the late Neogene terror bird (Titanis) in North America during the Great American interchange. Geology, 35, 123–126.
  • MacKenzie, K. M., Palmer, M. R., Moore, A., Ibbotsen, A. T., Beaumont, W. R. C., Poulter, D. J. S. and Trueman, C. N. 2011. Locations of marine animals revealed by carbon isotopes. Scientific Reports, 1, 21.
  • Martin, E. E. and Haley, B. A. 2000. Fossil fish teeth as proxies for seawater Sr and Nd isotopes. Geochimica et Cosmochimica Acta, 64, 835–847.
  • Metzger, C. A., Terry, D. O. and Grandstaff, D. E. 2004. Effect of paleosol formation on rare earth element signatures in fossil bone. Geology, 32, 467–500.
  • Millard, A. R. and Hedges, R. E. M. 1996. A diffusion-adsorption model of uranium uptake by archaeological bone. Geochimica et Cosmochimica Acta, 60, 2139–2152.
  • Molleson, T. I., William, C. T., Cressey, G. and Din, V. K. 1998. Radiographically opaque bones from lead-lined coffins at Christ Church Spitalfields, London: an extreme example of diagenesis. Bulletin of the Geological Society of France, 169, 425–432.
  • Mucci, A. and Morse, J. W. 1983. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition. Geochimica et Cosmochimica Acta, 47, 217–233.
  • Newsome, S. D., Clementz, M. T. and Koch, P. L. 2010. Using stable isotope biogeochemistry to study marine mammal ecology. Marine Mammal Science, 26, 509–572.
  • Olszta, M. J., Cheng, X., Jee, S. S., Kumar, R., Kim, Y. Y., Kaufmann, M. J., Douglas, E. P. and Gower, L. B. 2007. Bone structure and formation: a new perspective. Materials Science and Engineering R, 58, 77–116.
  • Pike, A. W. G., Hedges, R. E. M. and van Calsteren, P. 2002. U-series dating of bone using the diffusion-adsorption model. Geochimica et Cosmochimica Acta, 66, 4273–4286.
  • Poduska, K. M., Regev, L., Boaretto, E., Addadi, L., Weiner, S., Kronik, L. and Curtarolo, S. 2011. Decoupling local disorder and optical effects in infrared spectra: differentiating between calcites with different origins. Advanced Materials, 23, 550–554.
  • Politi, Y., Arad, T., Klein, E., Weiner, S. and Addadi, L. 2004. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 306, 1161–1164.
  • Regev, L., Poduska, K. M., Addadi, L., Weiner, S. and Boaretto, E. 2010. Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. Journal of Archaeological Science, 37, 3022–3029.
  • Rogers, K., Beckett, S., Kuhn, S., Chamberlain, A. and Clement, J. 2010. Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral. Palaeogeography, Palaeoecology, Palaeoclimatology, 296, 125–129.
  • Sandin, S. A., Regetz, J. and Hamilton, S. L. 2005. Testing larval fish dispersal hypotheses using maximum likelihood analysis of otolith chemistry data. Marine and Freshwater Research, 56, 725–734.
  • Sexton, P. F., Wilson, P. A. and Pearson, P. N. 2006. Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “Frosty”. Geochemistry, Geophysics, Geosystems, 7 (12), doi: 10.1029/2006GC001291.
  • Staron, R. M., Grandstaff, B. S., Gallagher, W. B. and Grandstaff, D. E. 2001. REE signatures in vertebrate fossils from Sewel, NJ: implications for location of the KT boundary. Palaios, 16, 255–265.
  • Sturrock, A. M., Trueman, C. N., Darnaude, A. M. and Hunter, E. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology, 81, 766–795.
  • Thomas, D. J. 2004. Evidence for deep-water production in the North Pacific Ocean during the Early Cenozoic warm interval. Nature, 430, 65–68.
  • Towe, K. M. and Lowenstam, H. A. 1967. Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). Journal of Ultrastructure Research, 17, 1–13.
  • Trueman, C. N. 1999. Rare earth element geochemistry and taphonomy of terrestrial vertebrate assemblages. Palaios, 14, 555–568.
  • Trueman, C. N. 2007. Trace element geochemistry of bonebeds. 397–436. In Rogers, R. R., Eberth, D. A. and Fiorillo, A. R. (eds). Bonebeds: genesis, analysis and paleobiological significance. University of Chicago Press, Chicago, 512 pp.
  • Trueman, C. N. and Benton, M. J. 1997. A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings. Geology, 25, 263–266.
  • Trueman, C. N. and Tuross, N. 2002. Trace elements in recent and fossil bone apatite. 489–521. In Kohn, M. J., Rakovan, J. and Hughes, J. M. (eds). Phosphates: geochemical, geobiological, and materials importance. Reviews in Mineralogy and Geochemistry, 48, 742 pp.
  • Trueman, C. N., Behrensmeyer, A. K., Tuross, N. and Weiner, S. 2004. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31, 721–739.
  • Trueman, C. N., Field, J. H., Dortch, J., Charles, B. and Wroe, S. 2005. Prolonged coexistence of humans and megafauna in Pleistocene Australia. Proceedings of the National Academy of Sciences of the United States of America, 102, 8381–8385.
  • Trueman, C. N., Behrensmeyer, K. A., Potts, R. and Tuross, N. 2006. High resolution records of location and relative age from the rare earth element composition of fossil bones. Geochimica et Cosmochimica Acta, 70, 4343–4355.
  • Trueman, C. N., Palmer, M. R., Field, J., Privat, K., Ludgate, N., Chavagnac, V., Eberth, D. A., Cifelli, R. and Rogers, R. R. 2008. Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. Comptes Rendus Palevol, 7, 145–158.
  • Trueman, C. N., Kocsis, L., Palmer, M. R. and Dewdney, C. 2011. Fractionation of rare earth elements in bone mineral: a natural cation exchange system. Palaeogeography, Palaeoecology, Palaeoclimatology, 310, 124–132.
  • Trueman, C. N., MacKenzie, K. M. and Palmer, M. R. 2012. Identifying migrations in marine fishes through stable-isotope analysis. Journal of Fish Biology, 81, 826–847.
  • Tütken, T., Venneman, T. W. and Pfretzschner, H.-U. 2011. Nd and Sr isotope compositions in modern and fossil bones – proxies for vertebrate provenance and taphonomy. Geochimica et Cosmochimica Acta, 75, 5951–5970.
  • Valsami-Jones, E., Ragnarsdottir, K. V., Putnis, A., Bosbach, D., Kemp, A. J. and Cressey, G. 1998. The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chemical Geology, 151, 215–233.
  • Walther, B. D. and Limburg, K. E. 2012. The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology, 81, 796–825.
  • Weiner, S. 2008. Biomineralization: a structural perspective. Journal of Structural Biology, 163, 229–234.
  • Weiss, I. M., Tuross, N., Addadi, L. and Weiner, S. 2002. Mollusk larval shell formation: amorphous calcium carbonate is a precursor for aragonite. Journal of Experimental Zoology, 293, 478–491.
  • Williams, C. T. 1988. Alteration of chemical composition of fossil bones by soil processes and groundwater. 27–40. In Grupe, G. and Herrmann, B. (eds) Trace elements in environmental history. Springer-Verlag, Berlin. 174 pp.
PalAss Go! URL: | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+