Skip to content Skip to navigation

Article: Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule

Publication: Palaeontology
Volume: 55
Part: 1
Publication Date: January 2012
Page(s): 87 107
Author(s): Claude Monnet, Hugo Bucher, Jean Guex and Martin Wasmer
Addition Information

How to Cite

MONNET, C., BUCHER, H., GUEX, J., WASMER, M. 2012. Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule. Palaeontology55, 1, 87–107.

Online Version Hosted By

Wiley Online Library
Get Article: Wiley Online Library [Pay-to-View Access] |

References

  • ADAMI, C., OFRIA, C. and COLLIER, T. C. 2000. Evolution of biological complexity. Proceedings of the National Academy of Sciences, 97, 4463–4468.
  • ADAMOWICZ, S. J., PURVIS, A. and WILLS, M. A. 2008. Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proceedings of the National Academy of Sciences, 105, 4786–4791.
  • ALLEN, E. G. 2006. New approaches to Fourier analysis of ammonoid sutures and other complex, open curves. Paleobiology, 32, 299–315.
  • ALROY, J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280, 731–734.
  • ALROY, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology, 26, 319–329.
  • ARKELL, W. J., FURNISH, W. M., KUMMEL, B., MILLER, A. K., MOORE, R. C., SCHINDEWOLF, O. H., SYLVESTER-BRADLEY, P. C. and WRIGHT, C. W. 1957. Treatise on invertebrate paleontology. Part L. Mollusca 4. Cephalopoda, Ammonoidea. Geological Society of America, Colorado and University of Kansas Press, Lawrence, 490 pp.
  • ARTHUR, W. 2001. Developmental drive: an important determinant of the direction of phenotypic evolution. Evolution & Development, 3, 271–278.
  • ARTHUR, W. 2004. The effect of development on the direction of evolution: toward a twenty-first century consensus. Evolution & Development, 6, 282–288.
  • BAYER, U. and McGHEE, G. R. 1984. Iterative evolution of Middle Jurassic ammonite faunas. Lethaia, 17, 1–16.
  • BROWN, J. H. and MAURER, B. A. 1986. Body size, ecological dominance and Cope’s rule. Nature, 324, 248–250.
  • BOYAJIAN, G. and LUTZ, T. 1992. Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea. Geology, 20, 983–986.
  • BUCHER, H. 1988. A new Middle Anisian (Middle Triassic) ammonoid zone from northwestern Nevada (USA). Eclogae geologicae Helvetiae, 81, 723–762.
  • BUCHER, H. 1989. Lower Anisian ammonoids from the northern Humboldt Range (northwestern Nevada, USA) and their bearing upon the Lower–Middle Triassic boundary. Eclogae geologicae Helvetiae, 82, 945–1002.
  • BUCHER, H. 1992a. Ammonoids of the Shoshonensis Zone (Middle Anisian, Middle Triassic) from northwestern Nevada (USA). Jahrbuch der geologischen Bundesanstalt, 135, 425–465.
  • BUCHER, H. 1992b. Ammonoids of the Hyatti Zone and the Anisian transgression in the Triassic Star Peak Group, northwestern Nevada, USA. Palaeontographica, 223, 137–166.
  • BUCHER, H. 1994. New ammonoids from the Taylori Zone (Middle Anisian, Middle Triassic) from northwestern Nevada (USA). Mémoires de Géologie (Lausanne), 22, 1–8.
  • BUCHER, H. 2002. Early Anisian (Middle Triassic) ammonoid biostratigraphy of northeastern British Columbia. Eclogae geologicae Helvetiae, 95, 277–287.
  • BUCHER, H., LANDMAN, N. H., KLOFAK, S. M. and GUEX, J. 1996. Mode and rate of growth in ammonoids. 407–461. In LANDMAN, N. H., TANABE, K. and DAVIS, R. A. (eds). Ammonoid paleobiology. Topics in Geobiology, 13. Plenum Press, New York, 857 pp.
  • CHAMBERLAIN, J. A. 1976. Flow patterns and drag coefficients of cephalopod shells. Palaeontology, 19, 539–563.
  • CHAMBERLAIN, J. A. 1980. The role of body extension in cephalopod locomotion. Palaeontology, 23, 445–461.
  • CHAMBERLAIN, J. A. 1981. Hydromechanical design of fossil cephalopods. 289–336. In HOUSE, M. R. and SENIOR, J. R. (eds). The Ammonoidea. Systematics Association Special Volume, 18, Academic Press, London, 593 pp.
  • COPE, E. D. 1885. On the evolution of the Vertebrata. American Naturalist, 19, 140–148, 234–247, 341–353.
  • COPE, E. D. 1887. The origin of the fittest: essays on evolution. D. Appleton and Company, New York, 467 pp.
  • COPE, E. D. 1896. The primary factors of organic evolution. Open Court Publishing Company, Chicago, 547 pp.
  • DAGYS, A. S. and WEITSCHAT, W. 1993. Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia, 26, 113–121.
  • DANIEL, T. L., HELMUTH, B. S., SAUNDERS, B. and WARD, P. D. 1997. Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology, 23, 470–481.
  • DEPÉRET, C. 1909. The transformations of the animal world. International Scientific Series, 94, Kegan Paul, Trench, Trübner and Company, London, 359 pp.
  • DOMMERGUES, J. L. 1990. Chapter 7. Ammonoids. 162–187. In McNAMARA, K. J. (ed.). Evolutionary trends. Belhaven Press, London, 368 pp.
  • DOMMERGUES, J. L., LAURIN, B. and MEISTER, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology, 22, 219–240.
  • DOMMERGUES, J. L., MONTUIRE, S. and NEIGE, P. 2002. Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology, 28, 423–434.
  • DOMMERGUES, J. L., CARIOU, E., CONTINI, D., HANTZPERGUE, P., MARCHAND, D., MEISTER, C. and THIERRY, J. 1989. Homéomorphies et canalisations évolutives: le rôle de l’ontogenèse. Queslques exemples pris chez les ammonites du Jurassique. Geobios, 22, 5–48.
  • EMBRY, A. F. 1997. Global sequence boundaries of the Triassic and their identification in the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, 45, 415–433.
  • ERBEN, H. K. 1966. Über den Ursprung der Ammonoidea. Biological Reviews, 41, 641–658.
  • FISHER, D. C. 1986. Progress in organismal design. 99–117. In RAUP, R. M. and JABLONSKI, D. (eds). Patterns and processes in the history of life. Springer, Berlin, 447 pp.
  • GALFETTI, T., BUCHER, H., OVTCHAROVA, M., SCHALTEGGER, U., BRAYARD, A., BRÜHWILER, T., GOUDEMAND, N., WEISSERT, H., HOCHULI, P. A., CORDEY, F. and GUODUN, K. 2007. Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters, 258, 593–604.
  • GARCÍA-RUIZ, J. M., CHECA, A. and RIVAS, P. 1990. On the origin of ammonite sutures. Paleobiology, 16, 349–354.
  • GOULD, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 587–640.
  • GOULD, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology, 62, 319–329.
  • GOULD, S. J. 1990. Speciation and sorting as the source of evolutionary trends, or ‘things are seldom what they seem’. 3–27. In McNAMARA, K. J. (ed.). Evolutionary trends. Belhaven Press, London, 368 pp.
  • GOULD, S. J. 1996. Full house: the spread of excellence from Plato to Darwin. Harmony Books, New York, 244 pp.
  • GOULD, S. J. and LEWONTIN, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B, Biological Sciences, 205, 581–598.
  • GREGORY, T. R. 2008. Evolutionary trends. Evolution: Education and Outreach, 1, 259–273.
  • GUEX, J. 1973. Observations sur la répartition biostratigraphique des ammonites du Toarcien supérieur de l’Aveyron (France). Bulletin des Laboratoires de Géologie, Minéralogie, Géophysique et du Musée géologique de l’Université de Lausanne, 207, 1–14.
  • GUEX, J. 1981. Associations virtuelles et discontinuités dans la distribution des espèces fossiles: un exemple intéressant. Bulletin de la Société Vaudoise de Sciences Naturelles, 359, 179–197.
  • GUEX, J. 1992. Origine des sauts évolutifs chez les ammonites. Bulletin de la Société Vaudoise de Sciences Naturelles, 82, 117–144.
  • GUEX, J. 2001a. Environmental stress and atavism in ammonoid evolution. Eclogae geologicae Helvetiae, 94, 321–328.
  • GUEX, J. 2001b. Involution croissante et Règle de Cope. Bulletin de la Société Vaudoise de Sciences Naturelles, 87, 373–379.
  • GUEX, J. 2003. A generalization of Cope’s rule. Bulletin de la Société géologique de France, 174, 449–452.
  • GUEX, J. 2006. Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth and Planetary Science Letters, 242, 240–253.
  • HAAS, O. 1942. Recurrence of morphologic types and evolutionary cycles in Mesozoic ammonites. Journal of Paleontology, 16, 643–650.
  • HALLAM, A. 1975. Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature, 258, 493–496.
  • HAMMER, Ø. and BUCHER, H. 2005. Buckman’s first law of covariation – a case of proportionality. Lethaia, 38, 67–72.
  • HAMMER, Ø. and HARPER, D. A. T. 2005. Paleontological data analysis. Blackwell Publishing, Oxford, 351 pp.
  • HAQ, B. U., HARDENBOL, J. and VAIL, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Society of Economic Paleontologists and Mineralogists, Special Publication, 42, 71–108.
  • HASSAN, M. A., WESTERMANN, G. E. G., HEWITT, R. A. and DOKAINISH, M. A. 2002. Finite-element analysis of simulated ammonoid septa (extinct Cephalopoda): septal and sutural complexities do not reduce strength. Paleobiology, 28, 113–126.
  • HENDERSON, R. A. 1984. A muscle attachment proposal for septal function in Mesozoic ammonites. Journal of Paleontology, 27, 461–486.
  • HENNIG, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana, 280 pp.
  • HEWITT, R. A. and WESTERMANN, G. E. G. 1986. Function of complexly flutted septa in ammonoid shells. I. Mechanical principles and functional models. Neues Jahrbuch für Geologie und Palontologie, 172, 47–69.
  • HEWITT, R. A. and WESTERMANN, G. E. G. 1987. Function of complexly flutted septa in ammonoid shells. II. Septal evolution and conclusions. Neues Jahrbuch für Geologie und Palontologie, 174, 135–169.
  • HEWITT, R. A. and WESTERMANN, G. E. G. 1997. Mechanical significance of ammonoid septa with complex sutures. Lethaia, 30, 205–212.
  • HYATT, A. 1889. Genesis of the Arietitidae. Smithsonian Contributions to Knowledge, Washington, 26 (673), 1–238.
  • JABLONSKI, D. 1987. How pervasive is Cope’s rule? A test using Late Cretaceous mollusks. Geological Society of America, Abstracts with Programs, 19, 713–714.
  • JABLONSKI, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature, 385, 250–252.
  • JABLONSKI, D. 2000. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. 15–52. In ERWIN, D. H. and WING, S. L. (eds). Deep time: Paleobiology’s perspective. Chicago University Press for The Paleontological Society, Chicago, 371 pp.
  • JACOBS, D. K. 1990. Sutural pattern and shell stress in Baculites with implications for other cephalopod shell morphologies. Paleobiology, 16, 336–348.
  • JACOBS, D. K. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology, 18, 203–220.
  • KENNEDY, W. J. and COBBAN, W. A. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology, 17, 1–94.
  • KENNEDY, W. J. and WRIGHT, C. W. 1985. Evolutionary patterns in Late Cretaceous ammonites. Special Papers in Palaeontology, 33, 131–143.
  • KLUG, C. and KORN, D. 2004. The origin of ammonoid locomotion. Acta Palaeontologica Polonica, 49, 235–242.
  • KLUG, C., SCHATZ, W., KORN, D. and REISDORF, A. G. 2005. Morphological fluctuations of ammonoid assemblages from the Muschelkalk (Middle Triassic) of the Germanic Basin – indicators of their ecology, extinctions, and immigrations. Palaeogeography Palaeoclimatology Palaeoecology, 221, 7–34.
  • KRÖGER, B. 2005. Adaptive evolution in Paleozoic coiled cephalopods. Paleobiology, 31, 253–268.
  • KULICKI, C. and MUTVEI, H. 1988. Functional interpretation of ammonoid septa. 713–718. In WIEDMANN, J. P. and KULLMANN, J. (eds). Cephalopods – present and past. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 765 pp.
  • KURTEN, B. 1953. On the variation and population dynamics of fossil and Recent mammal populations. Acta Zoologica Fennica, 76, 1–122.
  • LEWY, Z. 2002. The function of the ammonite fluted septal margins. Journal of Paleontology, 76, 63–69.
  • LUTZ, T. M. and BOYAJIAN, G. E. 1995. Fractal geometry of ammonoid sutures. Paleobiology, 21, 329–342.
  • McGHEE, G. R., BAYER, U. and SEILACHER, A. 1991. Biological and evolutionary responses to transgressive-regressive cycles. 696–708. In EINSELE, G., RICKEN, W. and SEILACHER, A. (eds). Cycles and events in stratigraphy. Springer-Verlag, Berlin, 955 pp.
  • McKINNEY, M. L. 1988. Classifying heterochrony: allometry, size, and time. 17–34. In McKINNEY, M. L. (ed.). Heterochrony in evolution – a multidisciplinary approach. Plenum Press, New York, 348 pp.
  • McKINNEY, M. L. 1990. Classifying and analysing evolutionary trends. 28–58. In McNAMARA, K. J. (ed.). Evolutionary trends. Belhaven Press, London, 368 pp.
  • McKINNEY, M. L. and McNAMARA, K. J. 1991. Heterochrony, the evolution of ontogeny. Plenum Press, New York, 437 pp.
  • McNAMARA, K. J. 1990. Evolutionary trends. Belhaven Press, London, 368 pp.
  • McSHEA, D. W. 1991. Complexity and evolution: what everybody knows. Biology and Philosophy, 6, 303–324.
  • McSHEA, D. W. 1993. Evolutionary change in the morphological complexity of the mammalian vertebral column. Evolution, 47, 730–740.
  • McSHEA, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution, 48, 1747–1763.
  • McSHEA, D. W. 1996. Metazoan complexity and evolution: is there a trend? Evolution, 50, 477–492.
  • MONNET, C. 2005. Anisian (Middle Triassic) and Cenomanian (mid-Cretaceous) ammonoids: biochronology, biodiversity, and evolutionary trends. Unpublished PhD thesis, University of Zürich, Switzerland, 692 pp.
  • MONNET, C. and BUCHER, H. 2005a. New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Fossils and Strata, 52, 121.
  • MONNET, C. and BUCHER, H. 2005b (2006). Anisian (Middle Triassic) ammonoids from North America: quantitative biochronology and biodiversity. Stratigraphy, 2, 311–326.
  • MONNET, C., BUCHER, H., WASMER, M. and GUEX, J. 2010. Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intraspecific variability. Palaeontology, 53, 961–996.
  • NEIGE, P., MARCHAND, D. and BONNOT, A. 1997. Ammonoid morphological signal versus sea-level changes. Geological Magazine, 134, 261–264.
  • NEWELL, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution, 3, 103–124.
  • NICHOLS, K. M. and SILBERLING, N. J. 1977. Stratigraphy and depositional history of the Star Peak Group (Triassic), northwestern Nevada. Geological Society of America Special Paper, 178, 73pp.
  • NOVACK-GOTTSHALL, P. M. and LANIER, M. A. 2008. Scale-dependence of Cope’s rule in body size evolution of Paleozoic brachiopods. Proceedings of the National Academy of Sciences, 105, 5430–5434.
  • OMODEO, P. 1992. Phylogenetic concepts of the nineteenth century and the fundamental biogenetic law. Italian Journal of Zoology, 59, 17–21.
  • OVTCHAROVA, M., BUCHER, H., SCHALTEGGER, U., GALFETTI, T., BRAYARD, A. and GUEX, J. 2006. New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic recovery. Earth and Planetary Science Letters, 243, 463–475.
  • OLÓRIZ, F. and PALMQVIST, P. 1995. Sutural complexity and bathymetry in ammonites: fact or artifact? Lethaia, 28, 167–170.
  • OLÓRIZ, F., PALMQVIST, P. and PÉREZ-CLAROS, J. A. 1997. Shell features, main colonized environments, and fractal analysis of sutures in Late Jurassic ammonites. Lethaia, 30, 191–204.
  • OLÓRIZ, F., PALMQVIST, P. and PÉREZ-CLAROS, J. A. 1999. Recent advances in morphometric approaches to covariation of shell features and the complexity of suture lines in Late Jurassic ammonites, with reference to the major environments colonized. 273–293. In OLÓRIZ, F. and RODRIGUEZ-TOVAR, F. J. (eds). Advancing research on living and fossil cephalopods. Kluwer Academic and Plenum Publishers, New York, 535 pp.
  • PÉREZ-CLAROS, J. A., PALMQVIST, P. and OLÓRIZ, F. 2002. First and second orders of suture complexity in ammonites: a new methodological approach using fractal analysis. Mathematical Geology, 34, 323–343.
  • PFAFF, E. 1911. Uber Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie. Jahresbericht Niedersachsen geologische Vereins Hannover, 1911, 207–223.
  • RAUP, D. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41, 43–65.
  • RENSCH, B. 1948. Histological change correlated with evolutionary changes of body size. Evolution, 2, 218–230.
  • RENSCH, B. 1959. Evolution above the species level. Columbia University Press, New York, 419 pp.
  • SAUNDERS, W. B. and WORK, D. M. 1996. Shell morphology and suture complexity in Upper Carboniferous ammonoids. Paleobiology, 22, 189–218.
  • SAUNDERS, W. B. and WORK, D. M. 1997. Evolution of shell morphology and suture complexity in Paleozoic Prolecanitids, the rootstock of Mesozoic ammonoids. Paleobiology, 23, 301–325.
  • SAUNDERS, W. B., WORK, D. M. and NIKOLAEVA, S. V. 1999. Evolution of complexity in Paleozoic ammonoid sutures. Science, 286, 760–763.
  • SCHINDEWOLF, O. H. 1940. Konvergenz bei Korallen und Ammoniten. Fortschritte der Geologie und Palaeontologie, 12, 387–491.
  • SCHMIDT, H. 1930. Uber die Bewegungsweise der Schalencephalopoden. Palontologische Zeitschrift, 12, 194–208.
  • SEILACHER, A. and LABARBERA, M. 1995. Ammonites as Cartesian divers. Palaios, 10, 493–506.
  • SILBERLING, N. J. and NICHOLS, K. M. 1980. Phylogenetic patterns among Middle Triassic ammonites. Rivista Italiana di Paleontologia, 85, 737–740.
  • SILBERLING, N. J. and NICHOLS, K. M. 1982. Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada. U.S. Geological Survey Professional Paper, 1207, 77pp.
  • SILBERLING, N. J. and WALLACE, R. E. 1969. Stratigraphy of the Star Peak Group (Triassic) and overlying lower Mesozoic rocks, Humboldt Range, Nevada. U.S. Geological Survey Professional Paper, 592, 50pp.
  • SIMPSON, G. G. 1953. The major features of evolution. Columbia University Press, New York, 434 pp.
  • SMITH, J. P. 1914. The Middle Triassic marine invertebrate faunas of North America. U.S. Geological Survey Professional Paper, 83, 254pp.
  • SNIEGOWSKI, P. D. and MURPHY, H. A. 2006. Evolvability. Current Biology, 16, R831–R834.
  • SPEED, R. C. 1978. Paleogeographic and plate tectonic evolution of the early Mesozoic marine province of the western Great Basin. Society of Economic Paleontologists and Mineralogists, Pacific Coast Paleogeography Symposium, 2, 253–270.
  • STANLEY, S. M. 1973. An explanation for Cope’s rule. Evolution, 27, 1–26.
  • STANLEY, S. M. 1979. Macroevolution, pattern and process. W.H. Freeman and Company, San Francisco, 332 pp.
  • SWINNERTON, H. H. and TRUEMAN, A. E. 1917. The morphology and development of the ammonite septum. Quarterly Journal of the Geological Society, 73, 26–58.
  • THIERRY, J. 1982. Rythme d’évolution des caractères morphologiques chez les Macrocephalitidae (Cephalopoda, Ammonitina, Jurassique moyen). 211–218. In CHALINE, J. (ed.). Modalités, rythmes, mécanismes de l’évolution biologique. Colloques Internationaux du Centre National de la Recherche Scientifique, 330, Editions du CNRS, Paris, 335 pp.
  • TOZER, E. T. 1994. Canadian Triassic ammonoid faunas. Bulletin of the Geological Survey of Canada, 467, 663.
  • TRUEMAN, A. E. 1940. The ammonite body chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal of the Geological Society, 96, 339–383.
  • UBUKATA, T., TANABE, K., SHIGETA, Y., MAEDA, H. and MAPES, R. H. 2010. Eigenshape analysis of ammonoid sutures. Lethaia, 43, 266–277.
  • ULRICH, M. and MUNDLOS, R. 1985. Immigration of cephalopods into the German Muschelkalk basin and its influence on the suture lines. 221–239. In BAYER, U. and SEILACHER, A. (eds). Sedimentary and evolutionary cycles. Lecture Notes in Earth Sciences, 1, Springer, Berlin, 465 pp.
  • URDY, S., GOUDEMAND, N., BUCHER, H. and CHIRAT, R. 2010a. Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution, 314, 280–302.
  • URDY, S., GOUDEMAND, N., BUCHER, H. and CHIRAT, R. 2010b. Growth-dependent phenotypic variation of molluscan shells: implications for allometric data interpretation. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution, 314, 303–326.
  • VALENTINE, J. W., COLLINS, A. G. and MEYER, C. P. 1994. Morphological complexity increase in metazoans. Paleobiology, 20, 131–142.
  • VERMEIJ, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, NJ, 544 pp.
  • WAGNER, G. P. and ALTENBERG, L. 1996. Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.
  • WAGNER, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution, 50, 990–1007.
  • WANG, S. C. 2001. Quantifying passive and driven large-scale evolutionary trends. Evolution, 55, 849–858.
  • WARD, P. 1980. Comparative shell shape distributions in Jurassic–Cretaceous ammonites and Jurassic–Tertiary nautilids. Paleobiology, 6, 32–43.
  • WARD, P. 1981. Shell sculpture as a defensive adaptation in ammonoids. Paleobiology, 7, 96–100.
  • WEBSTER, M. 2007. A Cambrian peak in morphological variation within trilobite species. Science, 317, 499–502.
  • WEST-EBERHARD, M. J. 2003. Developmental plasticity and evolution. Oxford University Press, New York, 794 pp.
  • WESTERMANN, G. E. G. 1966. Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). Neues Jahrbuch für Geologie und Palontologie Abhandlungen, 124, 289–312.
  • WESTERMANN, G. E. G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sciences Contributions, Royal Ontario Museum, 78, 1–39.
  • WESTERMANN, G. E. G. 1975. Model for origin, function, and fabrication of flutted cephalopods septa. Palontologische Zeitschrift, 49, 235–253.
  • WESTERMANN, G. E. G. 1996. Ammonoid life and habitat. 608–707. In LANDMAN, N. H., TANABE, K. and DAVIS, R. A. (eds). Ammonoid paleobiology. Topics in Geobiology, 13. Plenum Press, New York, 857 pp.
PalAss Go! URL: http://go.palass.org/5io | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+