FIRST RECORDS OF FOSSIL TREMECINE HYMENOPTERANS

by SONJA WEDMANN

ABSTRACT. Two Hymenoptera, from the Upper Oligocene of Enspel (Germany) and the Upper Pliocene of Willershausen (Germany), are described and their systematic position is discussed. The fossil from Enspel shows parts of the body and almost the complete wing venation. After analysis of the phylogeny of Tremecinae (Scricidae) it could be placed near Eriotremex and Aftotremex. The specimen from Willershausen has only the apical part of one forewing preserved and belongs to Tremex.

The earliest representatives of hymenopterous insects are from the Triassic of Australia (Riek 1955) and Russia (Rasnitsyn 1980, 1988). They are exclusively members of the Xyelidae. Only in the Jurassic do more hymenopterous taxa (Rasnitsyn 1988) appear. Many of these belong to the Sricidae or their stem-group. One of the oldest records of a stem-group member of the Sricidae is that of Sinosirex Hong, 1975 from the Upper Jurassic or Lower Cretaceous of China (Königsmann 1977). Myrmiciidae (= Pseudosiricidae) from the Upper Jurassic and Cretaceous was synonymized with Sricidae by Rasnitsyn (1988) because the thorax shows features typical of sricids. Perhaps these fossils belong to the stem-group of the Sricidae, too. The Auliscinae from the Upper Jurassic of Karatau are placed in Sricidae by Rasnitsyn (1969, 1980), but Königsmann (1977) considered this placement to be problematical. The Praesiricidae from Lower Cretaceous of Transbaikalia and from the Upper Jurassic of Kazakhstan have been removed from the Sricidae (Rasnitsyn 1983).

The extant Sricidae consist of the Sricinae (not necessarily a monophyletic group) and the Tremecinae. The oldest fossil sricine is from the Lower Cretaceous of eastern Russia; it is possibly related to Xeris Costa, 1894 and Eooxeris Maa, 1949 (Gromov et al. 1993). The oldest Tertiary find is Urocerus patagonicus Fidalgo and Smith, 1987, described from Paleocene shales in Patagonia (Fidalgo and Smith 1987); Urocerus ligniticus (Piton, 1940) and two other Urocerus fossils are recorded from the Paleocene of Menat, Puy-de-Dôme, France (Nel 1988). Eooxeris klebsi (Brues, 1926) is known from Baltic amber (Brues 1926). Other fossil Sricinae were mentioned by Nel (1991) from Oligocene and Miocene shales in France. Urocerites spectabilis Heer, 1867 has been described from the Miocene shales of Radoboj, Croatia.

The two fossils described here are the first reports of Tremecinae in the geological record. One fossil was found in the lake deposits of Enspel (c. 25 Ma; Storch et al. 1996; Wuttke 1997), near Bad Marienberg, Westerwald Mountains, Rheinland-Pfalz, Germany. The second fossil is from the lake deposits (Upper Pliocene) of Willershausen near Osterode in the Harz Mountains, Lower Saxony, Germany.

Before determining the exact systematic position of a fossil species or higher taxon, the phylogenetic relationships among the related extant taxa should be clarified. So far only Gauld and Mound (1982) have attempted to reconstruct the phylogeny of Sricidae. A new evaluation of characters has led to the reconstruction of phylogenetic relationships presented here.

EXTANT MATERIAL

I examined the venation of the forewings of the following extant material from the general collection of the Muséum National d'Histoire Naturelle in Paris: Eriotremex insignis Smith, 1859: 2♀; Tremex

PHYLOGENY OF TREMECINAE

Siricidae

Siricidae is very probably a monophyletic group (Königsmann 1977). There are several autapomorphic features for this taxon (Text-fig. 1, characters 1–6): Both the labium and maxilla are very hairy, the maxillary palp is 1-segmented (Ross 1937). The mesonotum has two diagonal grooves separating off side lobes (Ross 1937; Benson 1938). This feature seems not to be present in Sinostrex (Hong 1975), which can be interpreted either as a plesiomorphic feature or as an apomorphic loss in Sinostrex. Apomorphic characters of the wing venation are the basad inclined first part of Rs (Königsmann 1977; Rasnitsyn 1988) and the short fused part of Rs+M (Königsmann 1977). The last abdominal segments of both sexes are modified: in the female tergite 9 is short with a distinct precornal basin, tergite 10 is long, horn-like and strongly protruding caudal (Ma 1949). In the male the ninth tergite is divided into two triangular plates and the last sternite is drawn out pointedly (Königsmann 1977).

Extant Siricidae are divided into two groups, Siriciniae and Tremeceinae (Ashmead 1898). In this investigation the classification of Rohwer (1911) is followed.

Siriciniae

The Siriciniae are not necessarily monophyletic because no autapomorphic characters are known. The 3-segmented labial palp is a plesiomorphic character which is shared with Orussidae, Anxyelidae, most Xiphydriidae and other taxa (Ross 1937). Another plesiomorphic feature is the long, slender, multi-segmented antenna. Further characters used to separate Siriciniae from Tremeceinae are the attachment of the larvae of Siriciniae to conifers, short distance between the antennae, ratio of width to length of eyes being not more than 1:5 and contraction of the anal cell from about the middle (Benson 1943). These characters are not present in all genera of Siriciniae or not only in genera of Siriciniae. Gauld and Mound (1982) regarded the contraction of the anal cell from about the middle as an autapomorphic feature of Siriciniae without Siricosoma Forsius, 1933. But, this is a rather vague character which is present also in Teredon (Bradley 1913, text-fig. 10), and therefore I consider this feature to be unsuitable to confirm the monophyly of Siriciniae without Siricosoma. Further investigations are necessary to resolve the phylogenetic relationships of these taxa.

Gauld and Mound (1982) established a sister-group relationship between Siricosoma and Tremeceinae (sensu Rohwer 1911) because these taxa have only one hind tibial spur (termed the mid tibial spur by Gauld and Mound (1982)). However, in Xeris Costa, 1894 and in the closely related Neoxeris Saini and Singh, 1987, there is only one spur present, too, which is rated as a convergent development by Gauld and Mound (1982). Even in Urocerus flavicornis Fabricius, 1781, about 10 per cent. of the males possess only a single spur on the hind tibia (Bradley 1913), which is why I consider this character to be very weak. As a second autapomorphic feature for Siricosoma-Tremeciniae the shape of the distal flagellar segments is listed (Gauld and Mound 1982), a feature which is not defined more closely. The third apomorphy of Gauld and Mound (1982) is that the antennal bases of Siricosoma and of the taxa belonging to the Tremeceinae are set far apart. This character is also found in Striotrex Smith, 1986, which is placed currently in the Siriciniae (Smith 1988). As stated before, it is necessary to investigate many more characters before a well-founded analysis of phylogenetic relationships is possible.
TEXT-FIG. 1. Phylogenetic relationships of extant Siricinae. The shaded area shows the possible phylogenetic position of Eriotremex or Afrotremex sp. from Enspel. The numbers refer to the following list of apomorphetic characters. 1, labium and maxilla very hairy. 2, maxillary palp 1-segmented. 3, mesonotum with two diagonal grooves setting off side lobes. 4, first part of Rs directed diagonally towards wing base. 5, fused part of Rs and M very short. 6, abdominal segments 9 and 10 modified. 7, labial palp two-segmented. 8, vein 1r-m in hindwing shifted apically and located near middle of cell 1M. 9, antenna with five or six segments. 10, hindleg of male widely dilated. 11, vein 2r-m absent in forewing. 12, hindwing without closed anal cell. 13, veins M and cu-a of forewing (almost) in line. 14, disc on ninth abdominal tergite convex in the middle and hairy. 15, apical position of vein 2r-m in forewing.

Tremicinae

Tremicinae sensu Rohwer (1911) comprises Teredon, Eriotremex, Afrotremex and Tremex. This taxon is most probably monophyletic. A synapomorphic feature of the Tremicinae is probably the 2-segmented labial palp (Text-fig. 1, character 7) which is present in Teredon (Konow 1905), Tremex (Bradley 1913; Benson 1943), Eriotremex (Benson 1943) and Afrotremex (David R. Smith, pers. comm.).

In the hindwing, vein 1r-m (nomenclature after Ross 1936) is shifted towards the apex so that it is located at about the middle of cell 1M at least in the following species: Teredon laitarsis (Bradley 1913, fig. 10), Eriotremex formosanus (Matsumura 1930, pl. 6, fig. 4; Smith 1975, fig. 1), E. smithi (Kirby 1882, pl. 15, fig. 1), E. yamasaktii (Togashi 1990, fig. 1) and E. insignis, Afrotremex hyalinatus (Guiglia 1937, pl. 15), Tremex apicalis (Matsumura 1930, pl. 6, fig. 7), T. chuyoi (Sonan 1938, fig. 5), T. longicollis (Matsumura 1930, pl. 6, fig. 3), T. niger (Sonan 1938, fig. 4), T. pandora (Westwood 1874, pl. 21, fig. 9), T. rugicollis (Westwood 1874, pl. 20, fig. 9), T. columba, T. fusccornis and T. magus. In Siricinae and in many taxa whose wing venation is considered to be rather primitive, e.g. Xyelidae (Königsmann 1977), vein 1r-m is located at the basal part of cell 1M. Thus, the apical position of vein 1r-m is probably another synapomorphic feature of the Tremicinae (Text-fig. 1, character 8).

Bradley (1913) mentioned the loss of cerci in Tremicinae. This could be another apomorphic character of Tremicinae, since in Teredon (David R. Smith, pers. comm.), Afrotremex (David R. Smith, pers. comm.) and Tremex (Benson 1943) cerci are entirely absent. However, species of
Eriotrema possess cerci (Benson 1943). On condition that loss of cerci is apomorphic for Tremecinae the presence of cerci in Eriotrema would have to be rated as a reversal. This would be an autapomorphic feature of Eriotrema. The alternative is to assume independent loss of cerci in Teredon, Afrotremex and Tremex. This could support a sister group relationship of Afrotremex and Tremex.

The attachment of Tremecinae to angiosperm trees (Benson 1943) is not necessarily apomorphic for the Tremecinae since the larval host plants of Teredon and of Afrotremex are not known. One species of Eriotrema is associated with angiosperm plants and the larvae of Tremex species seem to live exclusively in angiosperm trees (Smith 1978).

Teredon
The two species of Teredon have the following apomorphic characters (Text-fig. 1, characters 9–10): The antennae are 5- or 6-segmented. The hindleg of the male has a widely expanded tibia and basitarsus (Cresson 1863).
Eriotrems + Afrotremex + Tremex

The taxa Eriotrems, Afrotremex and Tremex probably form a monophylum. In these taxa vein 2r-m is absent, M and cu-a almost are in line in the forewing, and the hindwing lacks a closed anal cell (Text-fig. 1, characters 11–13).

There are several diagnostic characters for Eriotrems (Benson 1943). The basal position of vein 2r-rs in the forewing is a plesiomorphic feature and the rating of the presence of cerci is not clear (see above). The only possible apomorphic feature of Eriotrems is that the disc on the ninth abdominal tergite is convex in the middle and hairy (Text-fig. 1, character 14). In Teredon, Afrotremex and Tremex this disc is flat and bald (Pastees 1951; David R. Smith, pers. comm.) as in the Siricinae.

The diagnostic features of Afrotremex are the basal position of vein 2r-rs in the forewing, a flat ninth abdominal tergite, and the presence of a genal carina (Pastees 1951). Probably all of these character states are plesiomorphic since they can be found in several taxa of Siricinae, too. A genal carina is absent in Eriotrems, Tremex and some taxa of the Siricinae. The state of this character is not known for Teredon. Independent loss could have occurred easily.

Tremex has an apomorphic character in the apical position of vein 2r-rs in the forewing (Text-fig. 1, character 15).

The phylogenetic relationships between Eriotrems, Afrotremex and Tremex cannot be resolved with the characters presently available.

Characters of the wing venation should be used with caution. Because of potential variability of the wing venation of lower Hymenoptera (Kloiber 1936; Zirngiebl 1939; Jansen 1987) and especially of woodwasps (Cockerell 1921), 28 individuals of six species of Tremex and two specimens of Eriotrems insignis were examined. Although there were several aberrations, no significant variability in the above mentioned characters of the wing venation could be detected. Thus, the use of the venational characters is justified.

Altogether, this phylogenetic analysis is based on characters for which homoplasy is possible. It is desirable to find many more additional characters to test the proposed relationships.

SYSTEMATIC PALAEONTOLOGY

Genus Eriotrems Benson, 1943 or Afrotremex Pasteels, 1951

Eriotrems or Afrotremex sp.

Text-figures 2–4

Material. Collection-no. 9604, deposited in the Landesamt für Denkmalpflege Rheinland-Pfalz, Referat Erdgeschichtliche Denkmalpflege, Mainz, Germany.

Locality. Enspel, near Bad Marienberg, Westerwald Mountains, Germany. Fossil site 6, horizon 16.

Age. Upper Oligocene, c. 25 Ma (Storch et al. 1996; Wuttke 1997).

Preservation. The fossil is seen from the ventral side. The body is fragmentarily preserved (Text-fig. 2). In the head the lower parts of the two eyes are visible. Fragments of the antennae are preserved in front of the head. The thorax shows no detailed structures. The left forewing is only partly present (Text-fig. 2). On the right side both wings can be seen clearly (Text-fig. 3). The abdomen is fragmentarily preserved. From the presence of an ovipositor the fossil can be determined as female.

Morphology. Length 33 mm from head to tip of ovipositor. Forewing 19 mm long. Lower part of forewing and upper part of hindwing overlap, veins in this area cannot be seen (Text-fig. 3). In forewing, 2r-rs is located basally, 2r-m absent with 1Rs and 2Rs united, and M and cu-a in line (Text-fig. 3). Vein 1r-m seems shifted backwards in hindwing, no trace of it above proximal part of cell M, possibly located at middle of upper margin of cell M. Hindwing lacks closed anal cell. Dark shadow below vein A1 in hindwing, probably caused
TEXT-FIG. 3. *Eriotremex* or *Afrotremex* sp.; Landesamt für Denkmalpflege Rheinland-Pfalz No. 9604; Enspel, Germany, Upper Oligocene; *Camera lucida* drawing of right wings. Scale bar represents 2 mm. For abbreviations see text.

TEXT-FIG. 4. *Eriotremex* or *Afrotremex* sp.; Landesamt für Denkmalpflege Rheinland-Pfalz No. 9604; Enspel, Germany, Upper Oligocene; *Camera lucida* drawing of hind part of abdomen. Scale bar represents 2 mm. rv = rami valvularum, v3 = third valvulae.
by folded wing membrane (Text-fig. 3). Semicircular structures at base of ovipositor (Text-fig. 4) are rami valvularum (Snodgrass 1935). Ovipositor length 15 mm from base to tip, but it is unclear if ovipositor is completely preserved. Ratio length of forewing/length of ovipositor 1:27.

Systematic position. The fossil belongs to the monophyletic group *Eriotrema* + *Afrotremex* + *Tremex* because in the forewing 2r-m is absent, M and cu-a are almost in line and the hindwing lacks a closed anal cell (complex of apomorphic features 11–13 in Text-fig. 1). The fossil can be distinguished from *Tremex* by having 2r-rs in a basal position (Text-fig. 3). This is the plesiomorphic condition which is present in *Eriotrema* and *Afrotremex*. The appearance of the disc on the ninth abdominal tergite is not visible in the fossil. Consequently, the phylogenetic position must be within the monophylum consisting of *Eriotrema* + *Afrotremex* + *Tremex*, whilst *Tremex* can be excluded. In Text-figure 1 the area of possible phylogenetic positions is shaded.

Genus *Tremex* Jurine, 1807

Tremex sp.

Text-figure 5

Locality. Willershausen near Osterode, Harz Mountains, Lower Saxony, Germany. No further data available.

Age. Upper Pliocene.

Preservation. Only one forewing (Text-fig. 5) is present. The basal part of the wing is missing. The venation is almost completely preserved. Parts of the veins are not dark but can be recognized because they are raised.

Morphology. Wing length 14 mm. Membrane apically undulated. Vein 2r-rs in apical position, M and cu-a in line. Vein 2rm absent, resulting in fusion of cells 1Rs and 2Rs. In cell 2M, veins M and Cu1a are parallel to each other (Text-fig. 5).

Systematic position. The fossil belongs to *Tremex* because of the apical position of vein 2r-rs in the forewing. This position of 2r-rs is an autapomorphic feature of *Tremex* (Text-fig. 1, character 14). A determination of the species is not possible since there are no known significant differences in the wing venation of *Tremex* at species level.

ZOOGEOGRAPHICAL AND EVOLUTIONARY CONSIDERATIONS

The two extant species of *Teredon* occur only in Cuba (Smith 1978). There are 11 recent species of *Eriotrema* which are native to the Oriental Region (Maa 1956; Smith 1978; Togashi 1991). One species also occurs in Papua-New Guinea (Smith 1978). *E. formosanus* was recently introduced in North America (Smith 1975, 1996). The two species of *Afrotremex* are native to Central Africa (Guiglia 1937; Pasteels 1951). Currently, there are 23 species of *Tremex* (Smith 1978; Togashi 1979). One species occurs in North America, but most species occur in the Palaearctic Region and a few species are confined to the Oriental Region (Smith 1978). The present geographical pattern of Tremecinae can be interpreted as a relic distribution. Probably the Tremecinae formerly were much more widely distributed than today.

For Siricinæ, a formerly much wider distribution is proven by the discovery of a fossil *Urocerus*-species in Paleocene shales in Argentina (Fidalgo and Smith 1987). Today there are no Siricidæ native in South America.

The specimen from the Upper Oligocene of Enspel belongs to the monophyletic group consisting of *Tremex* + *Afrotremex* + *Eriotrema*. If the reconstruction of the phylogenetic relationships
presented above is correct, not only must Tremex + Afrotremex + Eriotremsx have been present in Upper Oligocene times, but also Teredon as its supposed sister taxon.

The zoogeographical implications of the fossil from Enspel are unclear. It is possible that the fossil does not belong to Eriotremsx or Afrotremex but to the stem-lineage of Tremex + Afrotremex + Eriotremsx or to the stem-lineage of one of these three taxa (Text-fig. 1).

The Pliocene Tremex from Willershausen indicates the minimum age for Tremex, but the taxon probably is much older.

Acknowledgements. I am very grateful to Dr D. R. Smith (Washington) for examining several characters in the taxa Afrotremex and Teredon, for commenting on the manuscript critically and for providing literature. I thank Dr G. Tröster, Prof. Dr R. Willmann, Dipl.-Biol., Th. Hörmsehemeyer (all Göttingen), Dr A. P. Rasnitsyn (Moscow) and the editor Dr R. Wood (Cambridge, UK) for critical comments on the manuscript. I thank Dr M. Wuttke (Mainz) for the loan of the fossil from Enspel, and Dr M. Urlich (Stuttgart) who lent me the
REFERENCES

PITON, L. 1940. Paléontologie du Gisement Éocène de Menat (Puy-de-Dôme). Thèses présentées a la Faculté des Sciences de l'Université de Clermont, Clermont-Ferrand, Vallier.

RASINITSYN, A. P. 1969. [The origin and evolution of lower Hymenoptera.] *Transactions of the Paleontological Institute, Academy of Sciences of the USSR*, 3, 1–196. [In Russian].

1980. [The origin and evolution of the hymenopteran insects.] *Transactions of the Paleontological Institute, Academy of Sciences of the USSR*, 174, 1–192. [In Russian].

SONJA WEDMANN
Georg-August-Universität Göttingen,
II. Zoologisches Institut und Museum,
Abt. Morphologie und Systematik,
Berliner Str. 28, D-37073 Göttingen, Germany

Typescript received 24 June 1997
Revised typescript received