A CLADISTIC ANALYSIS OF THE HORSES OF THE TRIBE EQUINI

by JOSÉ L. PRADO and MARÍA T. ALBERDI

ABSTRACT. The Equini tribe with seven genera forms a monophyletic group defined by one synapomorphy: protocone connected to the protoloph. Fourteen species are considered as the terminal taxa: *Protohippus* (two species), *Calippus* (two), *Pliohippus* (one), *Hippidion* (three), *Dinohippus* (three), *Astrohippus* (one) and *Equus* (two). A cladistic analysis was performed using 20 characters from cranial morphology, upper and lower teeth, and appendicular skeletons. Polarity of characters was based on outgroup criterion using the Hippotheriini tribe. For some characters, apomorphic states were identified using *Merychippus*, which was the sister group of both tribes. One parsimonious cladogram of 31 steps and a consistency index of 0.77 was produced, from which a classification of the tribe Equini was constructed. We recognize two subtribes: *Protohippina* (*Protohippus* and *Calippus*) and *Pliohippina* subtrib. nov. (*Pliohippus*, *Hippidion*, *Dinohippus*, *Astrohippus* and *Equus*). *Pliohippus* was the sister group to the rest of the subtribe. The species of *Hippidion* form a monophyletic group and there is no evidence of a relationship between 'Onohippidium' gualushai, from North America, and the *Hippidion* group, from South America. *Astrohippus stocki* was the sister species of the *Equus*-group, which includes 'Dinohippus' mexicanus. The analysis shows that characters mostly from the cranial morphology and upper teeth characterize the suprageneric taxa. High congruence between the stratigraphical record and the phylogenetic hypothesis is observed.

THE subfamily Equinae Gray is clearly recognizable as a monophyletic group on the basis of at least five major shared-derived character states of the cheek teeth: (1) cement formed on deciduous and permanent cheek teeth; (2) presence of the pli caballin on premolars and molars; (3) presence of the pli linguaflexid; (4) moderately deep ectoflexid on p2; (5) unworn M1-M2 crown heights greater than 23–28 mm (Hulbert 1988a; Hulbert and MacFadden 1991; MacFadden 1992). This clade represents the major adaptive radiation of hypsodont horses and includes Equini and Hippotheriini (*sensu* Prothero and Schoch 1989, p. 532; = Hipparionini Quinn, 1955).

The Equini tribe comprises eight genera, one widespread throughout the world (*Equus*), six endemic to North America: *Protohippus*, *Calippus*, *Pliohippus*, *Dinohippus*, 'Onohippidium' and *Astrohippus* (Evander 1989; Hulbert 1989; Prothero and Schoch 1989) and one endemic to South America: *Hippidion* (Alberdi 1987; Alberdi and Prado 1993). The Equini lineage is well-known from the middle Miocene until the upper Pliocene in North America (Text-fig. 1). In South America, the first record of this lineage comes from the upper Pliocene–lower Pleistocene (Marshall et al. 1984; Alberdi and Prado 1993). The lineage became extinct during the late Pleistocene (Alberdi and Prado 1993; Martin and Klein 1984; Prado and Alberdi 1994; Politis et al. 1995).

Equini is a monophyletic group of genera distinguished from the tribe Hippotheriini (Prothero and Schoch 1989) by at least one apomorphic character state: protocone connected to the protoloph (Hulbert 1988a; Hulbert and MacFadden 1991; MacFadden 1992). Different phylogenies of equids have been proposed. Some authors (Stirton 1940; Lance 1950; Simpson 1951; Quinn 1955) considered, based on phylogenetic systematics, 'Merychippus' (*Protohippus*) as an ancestor of *Calippus* and *Pliohippus* and *Pliohippus* to be the ancestor of all *Hippidion*, *Astrohippus* and *Equus* species. On the other hand, Hulbert (1989) and MacFadden (1992) suggested, based on cladistics analysis, *Merychippus* as a sister group of Equini and Hippotheriini tribes (hipparioninones and protohippines). *Protohippus* and *Calippus* form a

PRADO AND ALBERDI: CLADISTIC ANALYSIS OF HORSES

monophyletic group and are set apart from the other genera: *Astrohippus*, *Hippidion*, "Onohippidium", *Dinohippus*, *Equus* and *Pliohippus*.

The phylogenetic relationships within the tribe Equini are a matter for debate (e.g. Matthew 1926; Stirton 1940; Quinn 1955; Evander 1989; Hulbert 1989; Prothero and Schoch 1989). This paper comprises a cladistic analysis for this tribe, with special attention to the relation of South American horses, based on data obtained from the cranial and appendicular skeleton morphology. In addition, we examined its congruence with the fossil record.

MATERIAL AND METHODS

We examined 14 species of Equini (Text-fig. 1). Since many species of fossil Equini are very poorly known, we decided to include only the best-known species of each recognized genus (as defined by Evander 1989 and Prothero and Schoch 1989). Specimens of *Protohippus perdutus* (FAM 126625, 125626, 60351, and 126759; from Devils Gulch Member, Nebraska, upper Barstovian), *Protohippus supremus* (FAM 12631, 125258 and 111728, from Mac Adams Quarry, Texas, lower Clarendonian), *Pliohippus mirabilis* after Evander (1989), MacFadden (1992), among others (FAM 60810 (skull, mandible and complete skeleton), from Devils Gulch Member, Nebraska, upper Barstovian), *Dinohippus interpolatus* (FAM 87201 and 18972, from Edson Quarry, Kansas, upper Hemphillian), *Dinohippus leidyanus* (FAM 116191, 116194, from Guymon quarries, Texas, upper Hemphillian), *Astrohippus stocki* (FAM 74290, 74291 and 74283, from Ogallala Formation, Texas, upper Hemphillian and from Yépmémera, Mexico, uppermost Hemphillian in Lance 1950), "Onohippidium" galushai (FAM 116136, 31938, 11872, Wikieup Fauna, Arizona, upper Hemphillian, and MacFadden and Skinner 1979) and *Equus simplicidens* (FAM 32550, 32551, 32553, 32535 and 20077, from Hagerman Horse Quarry, Idaho and Crosby Co., Texas, middle Blancan) came from the Frick Collection of the American Museum of Natural History. Data for *Calippus* (Calippus) *placidus* and *Calippus* (Grammohippus) *martini* were taken from Hulbert (1988a), "Dinohippus" *mexicanus* from Lance (1950) and *Hippidion* species from Alberdi and Prado (1993). The review of late Oligocene to early Pliocene mammalian biochronology by Tedford et al. 1987 and the recent review of Plio-Pleistocene biochronology from Argentina by Alberdi et al. 1995 provided a chronological framework for the analysis.

Character polarity was determined by outgroup comparison methods (Eldredge and Cracraft 1980; Watrous and Wheeler 1981; Humphries and Funk 1984; Maddison et al. 1984), collectively using the other tribe (Hippotheriini) of the subfamily Equinae as the outgroup. For some characters, apomorphic states were identified using *Merychippus* (sensu Evander 1989; Hulbert 1989; Hulbert and MacFadden 1991), which was the sister group of both tribes. The "Merychippus-group" has traditionally been a large polyphyletic assemblage with many species. Recent studies have separated the merychippine grade into a monophyletic clade (MacFadden 1992). The Hippotheriini data were taken from Simpson (1951), Gromova (1952), Forsten (1968), Alberdi (1974) and Watabe (1992).

In current cladistic analysis, missing entries in data matrices represent information that is unknown. This is the case for *Hippidion saldasi* and "Dinohippus" *mexicanus* which are known only from a few remains. The selection of characters is based on a critical review of specimens and the previous literature about cladistic analyses on horses (Bennett 1980; Hulbert 1988a, 1988b; Evander 1989; Hulbert 1989; Hulbert and MacFadden 1991; MacFadden 1992; Watabe 1992). In order to get one parsimony tree we used, where possible, the characters which present the fewest missing data. Consequently, our data matrix has more cranial characters than appendicular skeleton ones. Twenty characters were used: five from the cranial morphology (characters 1–5), six from the upper teeth (characters 6–11), four from the lower teeth (characters 12–15), three from the mandible (characters 16–18), and two from the appendicular skeleton (characters 19–20).
Character definition and codification

1. Depth of nasal notch (Text-fig. 2A). Some living mammals, such as tapirs, have retracted nasal bones, which have an adaptation to the presence of a proboscis. This feature, however, is rare in fossil horses, although some Hipparion from Eurasia apparently possessed a tapir-like proboscis (Studer 1911; Sefve 1927).

Outgroup comparison. All Merychippus species and the primitive group of Hippotheriini (morphotype 1 sensu Alberdi 1989) have a nasal notch level with, or anterior to P2 (Hulbert 1988a, 1989; Hulbert and MacFadden 1991; Watabe 1992), which is regarded as primitive.

States. 0 = anterior to P2; 1 = between P2-M1; 2 = posterior to M1.

2. Malar fossa (Text-fig. 2c). The malar fossa of Hulbert (1988a) is the same as the facial fossa of Gregory (1920) and the infracranial fossa of Gromova (1952).

Outgroup comparison. All Hippotheriini species have an absent or shallow malar fossa.

States. 0 = absent or shallow; 1 = present.

3. Dorsal preorbital fossa (DPOF; Text-fig. 2a). This fossa is the same as the lacrimal fossa of Gregory (1920), the supracranial fossa of Gromova (1952), the preorbital fossa of Pirlot (1953) and the nasomaxillary fossa of Skinner and MacFadden (1977). Many authors use the morphology of the DPOF as a taxonomic character in fossil horses. We believe, however, that this is an unstable character (Forsten 1983; Eisenmann et al. 1987; Alberdi 1989). According to Gromova (1952) its morphology varies among the ontogenetic states. We used only the presence/absence of this feature but did not consider the morphology.

Outgroup comparison. The most derived Hippotheriini species (morphotype 6 sensu Alberdi 1989) lost the DPOF (Hulbert 1988a; Watabe 1992). A very well-developed DPOF is regarded as primitive.

States. 0 = present; 1 = absent.
Text-fig. 3. Position of choanae anterior border: A, at the level of P4-M1 of *Merychippus* (drawing from FAM 12793); B, posterior to P4-M1 of *Equus* (redrawn from Eisenmann et al. 1988; fig. 6).

4. Muzzle length (Text-fig. 2). This character is determined by comparing I3-P2 diastema length (UDL) and upper tooth-row length (UTRL). Hulbert (1988b) recognized five character states. In our case we considered two character states because we analysed a different group of horses.
Outgroup comparison. Hippotheriini horses have a long muzzle, which is regarded as primitive (character state 0).

States. 0 = long (UDL > 40 per cent. of UTRL); 1 = short (UDL < 40 per cent of UTRL).

5. Position of choanae anterior border (Text-fig. 3). The tendency for the retraction of choanae position is related to the lengthening of the face.

Outgroup comparison. All *Merychippus* species and the primitive group of Hippotheriini (morphotypes 1 and 2 *sensu* Alberdi 1989) present the choanal anterior border at the level of P4-M1 or more forward, which is considered primitive.

States. 0 = to level P4-M1 or forward; 1 = posterior to P4-M1.

6. Protocone connection (Text-fig. 4). The protocone condition has been used to subdivide mesodont and hypsodont horses (Stirton 1940). In most recent papers, this character has been used to distinguish the Hippotheriini and Equini tribes (Evander 1989; MacFadden 1992).

Outgroup comparison. The protocone is isolated in all Hippotheriini species (Eisenmann et al. 1988).

States. 0 = isolated; 1 = connected.

7. Protocone shape on P3-M2 (Text-fig. 4). In the upper cheek teeth, the protocone varies from rounded, with an anterior spur, to oval and elongated and sometimes with angular borders. To employ this character for taxonomy, we compared the specimens at similar wear stages (Gromova 1952; Alberdi 1974; Eisenmann 1980).

Outgroup comparison. Protocone shape is round to oval in the tribe Hippotheriini.

States. 0 = round; 1 = oval; 2 = elongate-oval; 3 = triangular.

8. Internal postfossette plication (Text-fig. 4). Enamel plication is development in the anterior and posterior walls of prefossettes and postfossettes respectively. The plication decreases during ontogeny (Alberdi 1974). To employ this character for taxonomy we chose anterior postfossette plication because it is more stable. Nevertheless, specimens at similar wear stage were used.

Outgroup comparison. All *Merychippus* species and the most primitive groups of Hippotheriini have simple plication, which is regarded as primitive.

States. 0 = simple; 1 = multiple.

9. Metastyte development (Text-fig. 4). This is observed especially on P3-P4 at middle wear stages.

Outgroup comparison. Most Hippotheriini have a simple metastyte; the derived species have some developed but not to the degree of the Equini tribe (Hulbert 1988b).

States. 0 = simple; 1 = well-developed.

10. Protocone lingual border. This is observed especially on P3-M2 at middle wear stages. Text-figure 4 illustrates a sample of protocone lingual border.

Outgroup comparison. The most derived Hippotheriini species (morphotype 6 *sensu* Alberdi 1989) have a straight or concave lingual border to the protocone (Hulbert 1988b). A round or convex state is regarded as primitive.

States. 0 = round or convex; 1 = straight or concave.
11. Molar crown height. The increase in height of the tooth crowns was classically related with the change from browsing (brachydont) to grazing (hypsodont) horses (Simpson 1951). The height is taken from the crown bottom to the parastyle top in M1-M2, only in unworn specimens. In the Equini tribe, we think it is important to mark the state of character that reflects the change from browsing to grazing. The molar crown height of more than 28 mm indicates hypsodont horses.

Outgroup comparison. All *Merychippus* species have molar crown heights of about 25 mm (Hulbert 1988a, 1988b; Hulbert and MacFadden 1991). A molar crown height of less than 28 mm is regarded as primitive.

States. 0 = < 28 mm; 1 = ≥ 28 mm.

12. Depth of linguaflexid. Shape and depth of the linguaflexid varies with wear. The depth is taken on p3-p4 with middle wear (Text-fig. 5). This character seems more variable because the size of double-knots can be small or very big in relation to the tooth size (character 14).

Outgroup comparison. *Merychippus* has a shallow linguaflexid, which is regarded as primitive (see Text-fig. 5A).

States. 0 = shallow, as in Text-figure 5A morphology; 1 = middle, as in Text-figure 5B and 5D morphologies; 2 = deep, as in Text-figure 5C and 5E morphologies.

13. Depth of the ectoflexid (Text-fig. 5). This character varies with wear. The ectoflexid grooves from the buccal side continue inside and sometimes divide the isthmus into an anterior and a posterior part. The depth is taken on p3-p4 (Alberdi 1974; Hulbert 1988b; Watabe 1992).

Outgroup comparison. All Hippotheriini have a shallow ectoflexid, which is regarded as primitive.

States. 0 = shallow, as in Text-figure 5A morphology; 1 = moderate, without penetrating the isthmus, as in Text-figure 5B and 5D morphologies; 2 = deep, penetrating the isthmus, as in Text-figure 5C and 5E morphologies.
14. Sizes and shapes of the metaconid and the metastyloid (Text-fig. 5). The metaconid and metastyloid shape on the lower cheek was considered by Gromova (1952), who recognized two morphological types: hipparionid and caballoid. The linguaflexid affects this feature, classically named the double-knot. In the Equini tribe the size and shape of the linguaflexid give the peculiar morphology to the double-knot.

Outgroup comparison. *Merychippus* has small metaconid and metastyloid, which is regarded as primitive.

States. 0 = small, as in Text-figure 5A; 1 = of medium size, as in Text-figure 5B–D; 2 = large, as in Text-figure 5E.

15. Buccal borders of the protoconid and the hypoconid (Text-fig. 5). There is no variation during ontogeny (Alberdi 1974; Hulbert 1988b; Watabe 1992).

Outgroup comparison. Hippotheriini has a rounded condition; only the most derived species (morphotype 6 *sensu* Alberdi, 1989) show a tendency to straight protoconid and hypoconid labial borders.

States. 0 = rounded; 1 = straight.

16. Diastema i3-c (Text-fig. 6). Many horses possess a characteristic diastema between i3 and c. This character is mentioned by Bennett (1980).

Outgroup comparison. All *Merychippus* species do not present diastema between i3 and c. An absent diastema i3-c is regarded as primitive.

States. 0 = absent; 1 = present.

17. Incisor arcade (Text-fig. 6). The first and second incisors are arranged in a straight line or in an arcuate line. This feature is mentioned by Hulbert (1988a). Several papers have examined the muzzle and incisor morphologies in relation to dietary preference (e.g. Owen-Smith 1985; Janis and Ehrhardt 1988). These studies have shown that horses adapted to browsing habits had a relatively narrow muzzle and a strongly curved incisor arcade. At the other end of the morphological spectrum, most grazing species had a very broad muzzle, wide symphysis and a linear arrangement of incisors (MacFadden 1992, p. 241). Within fossil *Equus*, several different incisor and muzzle morphologies evolved, but *Equus simplicidens*, considered here, presents the arcuate state.

Outgroup comparison. Hippotheriini has an arcuate arcade, which is regarded as primitive.

States. 0 = arcuate; 1 = linear.

18. Muzzle width relative to upper tooth-row length at moderate wear-stage. This character is mentioned by Hulbert (1988a, 1989). The grazing ungulates have relatively broader muzzles in contrast with browsers. In general, dietary selectivity is related to muzzle width (MacFadden 1992). This character distinguishes *Protohippus* and *Calippus* from the other Equini horses.

Outgroup comparison. Hippotheriini has a narrow muzzle (Hulbert 1989), which is regarded as primitive.

States. 0 = moderate or narrow; 1 = broad (> 36 per cent.).

19. Number of digits. The pentadactyl limb has traditionally been recognized as the tetrapod archetype. Reduction of lateral metapodials in the evolution of horses has been mentioned by several authors (e.g. Matthew 1926; Simpson 1951) in relation to the development of the monodactyl limb.
Outgroup comparison. Hippotherini species have a tridactyl condition. Loss of digits is derived. Classical ontogenetic studies on the development of the carpus of horses support this polarity (Ewart 1894a, 1894b).

States. 0 = tridactyl; 1 = monodactyl.

20. Gracility of metapodials. The morphological characters in metapodials are closely associated with body weight and functional locomotion and their modifications throughout the evolutionary lineages of horses have been mentioned (Camp and Smith 1942; Sondaar 1968; Alberdi 1974; Hussain 1975; Alberdi and Prado 1993; Prado and Alberdi 1994). The slenderness index was defined by Gromova (1952) as the ratio percentage of the minimum breadth (near the middle of the bone) to the maximum length.

Outgroup comparison. All Merychippus species have slender metapodials, which are regarded as primitive.

States. 0 = slender, when the slenderness index is < 15; 1 = robust, when the slenderness index > 15.

Methods.

We have used the method of phylogenetic systematics developed by Hennig (1966). All characters are treated as additive, i.e. the transformation sequences are considered to be linear. Table 1 contains the data matrix used in this analysis. The data were analysed using Hennig86 version 1.5 (Farris 1988) for parsimony analysis and CLADOS version 0.9 (Nixon 1991) for examining the character distribution and production of publishing figures. Hennig86 was run with the implicit enumeration option (‘ie’) for calculating trees.

We rank a fossil’s stratigraphical position based on the radiometric dates of the first occurrence following the method proposed by Novell and Novacek (1992a, 1992b) to analyse the consensus between the fossil record and cladistic results. This method is based on that of Gauthier et al. (1988). We used the Spearman rank correlation coefficient (Hollander and Wolfe 1973) to measure the fit.

TABLE 1. Data matrix.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgroup</td>
<td>0</td>
</tr>
<tr>
<td>Protohippus supremus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Protohippus perditus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pliohippus mirabilis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hippidion devillei</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hippidion principale</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hippidion saldisi</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>1</td>
<td>?</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>‘Onohippidium’ gatunshai</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dinohippus interpolarus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dinohippus leidyanus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>‘Dinohippus’ mexicanus</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Astrohippus stocki</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Calippus (Calippus) placidaus</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Calippus (Grammohippus) martini</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Equus simplicidens</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
between the fossil record and rank clade in the cladograms (order of branching, with the first branch off of the main spine having the lowest clade rank). This coefficient was calculated using STATGRAPHICS version 5.0 (1991).

RESULTS

The data matrix (Table 1) contains two synapomorphies for the entire tribe (characters 6 and 11) which were not considered for calculations of tree length and consistency index. One parsimonious cladogram of 31 steps and a consistency index of 0.77 was obtained (Text-fig. 7). The cladogram shows that characters from cranial morphology (2, 3 and 5) reflect more parallel evolution.

The tribe Equini presents four synapomorphies: 'protocone connection' [6]; 'shape of protocone' [7]; 'height of molar crown' [11]; and 'depth of ectoflexid' [13]. Two of the four transformation series (7 and 13) present further changes in the cladogram.

The basal node shows two major clades. *Protohippus perditus, Protohippus supremus, Calippus (Calippus) placidus* and *Calippus (Grammohippus) martini* form a first monophyletic group supported by the following synapomorphies: 'short muzzle' [4(1)]; and 'broad muzzle' [18(1)]. There is another character state that supports this group: 'presence of malar fossa' [2(1)], which is
TEXT-FIG. 8. Simple pectinate phylogeny of Equini taxa and plots of age rank versus clade rank for pectinate cladograms (sensu Norell and Novacek 1992a, 1992b). Clade ranks are rescaled from 0 to 1. S, Spearman coefficient; O, outgroup; Pp, Protohippus perditus; Ps, Protohippus supremus; CCp, Calippus (Calippus) placatus; CGm, C. (Grymanohippus) martini; Pm, Pliohippus mirabilis; Hs, Hippidion saldiasi; Hd, Hippidion devillii; Hj, Hippidion principale; Di, Dinohippus interpolatus; O'g, ‘Onohippidion’ gattai; Dl, Dinohippus leidyanus; As, Astrohippus stocki; Dm, ‘Dinohippus’ mexicanus; Es, Equus simplicidens.
also found as a synapomorphy in the other major clade. Calippus species form a natural group defined by the ‘DPOF absent’ [3(1)], ‘choanae anterior border posterior to P4-M1’ [5(1)], ‘middle linguaflexid’ [12(1)], ‘diastema i3-c’ [16(1)] and ‘linear incisor arcade’ [17(1)].

The rest of the species forms a second monophyletic group supported by the following synapomorphies: ‘choanae anterior border posterior to P4-M1’ [5(1)], ‘middle linguaflexid’ [12(1)], ‘metaconid and metastylid middle’ [14(1)] and ‘diastema i3-c present’ [16(1)] where characters 12 and 14 present a further change in the cladogram. Pliohippus mirabilis are sister species of the main group. The other main group is well defined by the following synapomorphies: ‘nasal notch between P2 and M1’ [1(1)]; and ‘monodactyl limb’ [19(1)].

Inside this main group, two clades are well defined by synapomorphies. One clade supported by ‘robust metapodials’ [20(1)] includes the Hippiion species from South America. Hippiion devillei and Hippiion principale are characterized by ‘nasal notch posterior to M1’ [1(2)], ‘elongate-oval protocone’ [7(2)] and ‘ectoflexid deep, penetrating the isthmus’ [13(2)]. The other clade is supported by ‘presence of malar fossa’ [2(1)]. ‘Onohippidium’ gatashai, Dinohippus leidyanus, Astrohippus stockii, Dinohippus mexicanus and Equus simplicident form a monophyletic group based on ‘deep linguaflexid’ [12(2)]. Dinohippus leidyanus, ‘Dinohippus’ mexicanus and Equus simplicident form a natural clade supported by the ‘well-developed metastyle’ [9(1)]. Astrohippus stockii, ‘Dinohippus’ mexicanus and Equus simplicident form a clade characterized by ‘elongate-oval protocone’ [7(2)], ‘multiple internal postfossette plication’ [8(1)], ‘straight or concave protocone lingual border’, [10(1)] and ‘straight labial border of protoconid and hypoconid’ [15(1)]. Within this clade, ‘Dinohippus’ mexicanus and Equus simplicident are a monophyletic group based on the ‘DPOF absent’ [3(1)], ‘triangular protocone’ [7(3)] and ‘large metaconid and metastylid’ [14(2)].

We observed a good congruence between the fossil record and the phylogenetic hypothesis. Using our cladogram, nine possible pectinate cladograms have been obtained. Text-figure 8 shows the nine cladograms and the bivariate plots for each clade rank and age rank (A–I). Spearman coefficients are calculated and the results compared in Text-figure 8. Statistically significant correlations ($P < 0.05$) are found in five of the nine examined cladograms (A–B and F–H in Text-fig. 8). The close fit is particularly notable in Text-figure 8A–B and F. The last includes one non-resolved point (Text-fig. 8H), because Hippiion from South America is thought to have branched off very early in Equini phylogeny, but appears late in the record (Alberdi and Prado 1993).

DISCUSSION

The different kinds of characters used in the analysis (cranial, upper and lower teeth, mandible and appendicular skeleton morphology) define taxa at different levels in the cladogram. Characters mostly from the cranial morphology and upper teeth characterize the suprageneric taxa. Only synapomorphies of the upper dental morphology supported the tribe Equini. In addition, analysis shows that characters from cranial morphology suffer more parallel evolution and reversals, while characters from the appendicular skeleton, mandible, upper and lower teeth show little homoplasy. This suggests that the cranial morphology could be less conservative than the other features.

Based on phylogenetic information, we propose dividing the tribe Equini into two subtribes: Prototippiina sensu Huibert (1988a) and Pliohippinina (= Equinae sensu Gidley 1980 and Equina sensu Huibert and MacFadden 1991). The former includes two genera: Prototippus and Calippus, and the latter includes five genera: Pliohippus, Hippiion, Dinohippus, Astrohippus and Equus. Text-figure 7 shows the synapomorphies of cranial and upper teeth morphology that support these subtribes. In the latter subtribe, our analysis differentiated between two lineages, one that gave rise to Hippiion and the other to Equus.

Prototippus, previously placed as a subgenus of Merychippus (Stirtion 1940), is now considered to be a valid genus, closely related to Calippus. These two genera form a monophyletic group (Huibert 1988a). Several authors (Stirtion 1940; Simpson 1951), have suggested Prototippus to be the ancestor of Pliohippus and Equus; however, our analysis does not support this relationship. Prototippus supremus is the sister taxon of Calippus species.
The subtribe Protohippina forms the sister group to a second monophyletic group, the subtribe Pliohippina. Different phylogenetic relationships have been proposed between the genera Pliohippus, Hippidion, Dinohippus, Astrohippus and Equus. Sturton (1940) proposed Astrohippus as a subgenus of Pliohippus. This author recognized two distinct lineages within Pliohippus s.s. based on dental characters: Pliohippus s.s., closely related to South American horses; and Astrohippus, that gave rise to the Equus group species. Quinn (1955) showed that neither Astrohippus nor Dinohippus could be considered as ancestors of Equus based on facial and dental morphology. Quinn derived Equus separately from his new genus 'Eoequus'. Sondaar (1968), in his study of the equid manus, found that 'Dinohippus' mexicanus from Yepomera (Lance 1950) was closely related to Equus and generally more advanced in monodactyl than Astrohippus stocki. Dalquest (1978) suggested a polyphyletic origin of Equus based on dental morphology. Bennett (1980) and MacFadden (1984) showed close affinities between 'Dinohippus' mexicanus and Equus. Azzaroli (1982, 1988) considered Dinohippus leidyanus to be the ancestor of Equus.

Based on our phylogenetic analysis, we consider Pliohippus to be the sister taxon to Hippidion, Dinohippus, Astrohippus and Equus. The three species of Hippidion, sensu Alberdi and Prado (1993), form a monophyletic group, which is geographically restricted to South America and became extinct late in the Pleistocene. Alberdi and Prado (1993) did not find evidence of a relationship between 'Onohippidium' galushai and the Hippidion group, as suggested by MacFadden and Skinner (1979), and consequently regarded the former species as belonging within the Dinohippus-group. Our phylogenetic analysis supports this hypothesis. Within the Hippidion clade, Hippidion saldiasi is a sister species of Hippidion devillei and Hippidion principale. This phylogenetic hypothesis does not fit with the biochronology because the most derived Hippidion species appeared first in the South America fossil record.

Astrohippus stocki, 'Dinohippus' mexicanus and Equus simplicidens form a monophyletic group. Our analysis shows Astrohippus stocki to be the sister group of Equus-group. We consider 'Dinohippus' mexicanus as belonging within Equus-group.

Both subtribes delimited in the analysis show little overlap in their stratigraphical range (Text-fig. 1). Species of Protohippus and Calippus are frequently encountered across wide areas of North America east of the Rocky Mountains, ranging from Florida to Texas, and south to Honduras (Hulbert 1988a). The extinction of this subtribe at the end of the early Hemphillian (Text-fig. 1) occurred at a time of major reduction in Mio-Pliocene equid diversity (Webb 1977). The shift from tip-toed tridactyl to a monodactyl foot may have taken place at this time, accompanied by the evolution of a special ligamental pattern of the distal foot (Camp and Smith 1942). In the genus Pliohippus the side-toes were finally lost. This one-toed condition was, of course, retained in the various descendants of Pliohippus, including Equus (Simpson 1951). The Pliohippina subtribe represented a second monophyletic radiation of hypsodont equids. This radiation occurred in North America when aridity reached its peak in the Hemphillian and late Pliocene Blancan with the spread of open grassland in the Great Plains, Great Basin, and in the south-west (Shotwell 1961; Webb 1977). Southern members of this clade (Hippidion) dispersed into South America after the Great American Biotic Interchange that occurred about 3 Ma (sensu Webb 1985) through the isthmus of Panamá (Alberdi and Prado 1993). On the other hand, Equus dispersed throughout Eurasia and Africa during the late Pliocene and, also throughout South America at about the mid Pleistocene (Azzaroli 1982, 1992; Bonadonna and Alberdi 1987; Alberdi and Bonadonna 1988; Alberdi et al. 1991; Prado and Alberdi 1994). Before the Great American Biotic Interchange both lineages were represented in North America which would be the locus of origin of Hippidion and Equus. Nevertheless, Hippidion remains occur in the South American record stratigraphically below Equus remains. The former appeared during the upper Pliocene–lower Pleistocene and the latter in the middle Pleistocene (Alberdi and Prado 1993; Prado and Alberdi 1994). This can be correlated with the existence of two inter-American savannah corridors through South America (Webb 1985). The first was the high-level Andean route, while the second one corresponds to the low-level Eastern route. The existence of these different routes could be a consequence of the different climatic conditions and possibly was also related to shifts in the pasture photosynthesis cycle of carbon
(from C3 to C4 plants) that occurred in grassland communities (Cerling et al. 1991, 1993; Cerling 1992). MacFadden et al. (1994) pointed out the possibility of a relationship between fossil horse diet and the type of carbon grasses (C3 or C4). Nowadays, the high grassland has C3 plants while lower elevations have C4 plants.

This cladistic analysis is developed independently of biostratigraphical relationships, although this information is implicit in some character polarities. Nevertheless, there exists a high congruence between our cladistic analysis and the fossil record, especially in Text-figure 8H. This confirms (following Norell and Novacek 1992a, 1992b) the correspondence between age and cladistic information in most vertebrate examples. But, in our case, as we noted above, there is one unresolved point. This surely is a consequence of the fact that, in the phylogenetic tree, *Hippidion* occurred earlier than in the fossil record. Consequently, the pectinate cladogram shows a close fit with the fossil record, and cladoogram h (Text-fig. 8) may represent the best preliminary hypothesis of Equini tribe history throughout geological time.

<table>
<thead>
<tr>
<th>Family Equidae Gray, 1821</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subfamily Anchitheriinae Leidy, 1869</td>
</tr>
<tr>
<td>Subfamily Equinae Gray, 1821</td>
</tr>
<tr>
<td>Genus Kalobatippus Osborn in Cope-Matthew, 1915</td>
</tr>
<tr>
<td>Genus Archaeohippus Gidley, 1906</td>
</tr>
<tr>
<td>Genus Parahippus Leidy, 1858</td>
</tr>
<tr>
<td>Genus Merychippus sensu stricto Leidy, 1857</td>
</tr>
<tr>
<td>Tribe Hippotheriini Bonaparte, 1850</td>
</tr>
<tr>
<td>Tribe Equini Gray, 1821</td>
</tr>
<tr>
<td>Subtribe Protohippina Hulbert, 1988a</td>
</tr>
<tr>
<td>Genus Protohippus Leidy, 1858</td>
</tr>
<tr>
<td>Protohippus perditus (Leidy, 1858)</td>
</tr>
<tr>
<td>Protohippus supremus Leidy, 1869</td>
</tr>
<tr>
<td>Genus Calippus Matthew and Stirton, 1930</td>
</tr>
<tr>
<td>subgenus Calippus Matthew and Stirton, 1930</td>
</tr>
<tr>
<td>Calippus (Calippus) platicus (Leidy, 1858)</td>
</tr>
<tr>
<td>subgenus Grammohippus Hulbert, 1988a</td>
</tr>
<tr>
<td>Calippus (Grammohippus) martini Hesse, 1936</td>
</tr>
<tr>
<td>Subtribe Pliohippina subtrib. nov.</td>
</tr>
<tr>
<td>Genus Pliohippus Marsh, 1874</td>
</tr>
<tr>
<td>Pliohippus mirabilis Leidy, 1858</td>
</tr>
<tr>
<td>Genus Hippidion Owen, 1869</td>
</tr>
<tr>
<td>Hippidion salsiatus (Roth, 1899)</td>
</tr>
<tr>
<td>Hippidion devillei (Gervais, 1855)</td>
</tr>
<tr>
<td>Hippidion principale (Lund, 1845)</td>
</tr>
<tr>
<td>Genus Dinohippus-group Quinn, 1955</td>
</tr>
<tr>
<td>Dinohippus interopilatus (Matthew and Stirton, 1930)</td>
</tr>
<tr>
<td>‘Onohippidium’ galushai MacFadden and Skinner, 1979</td>
</tr>
<tr>
<td>Dinohippus leidyanus (Osborn, 1918)</td>
</tr>
<tr>
<td>Genus Astrohippus Stirton, 1940</td>
</tr>
<tr>
<td>Astrohippus stocki Lance, 1950</td>
</tr>
<tr>
<td>Genus Equus-group Linnaeus, 1858</td>
</tr>
<tr>
<td>‘Dinohippus’ mexicanus (Lance, 1950)</td>
</tr>
<tr>
<td>Equus simplicidens Cope, 1892</td>
</tr>
</tbody>
</table>
CONCLUSIONS

One parsimonious cladogram of 31 steps with a consistency index of 0.77 was produced, from which a classification of the tribe Equini was constructed. The analysis shows that characters mostly from the cranial morphology and upper teeth characterized the suprageneric taxa. As a result of this phylogenetic analysis, we propose the classification of family Equidae shown in Table 2.

We recognize two subtribes: Protohippipina and Plohippina. The first includes two genera: Protohippus and Calippus; and the second, five genera: Plohippus, Hippidion, Dinohippus, Astrohippus and Equus (Text-fig. 7). Protohippus supremus is the sister-taxon of Calippus species.

The subtribe Protohippipina forms the sister-group to a second monophyletic group, the subtribe Plohippina. The latter represents a second monophyletic radiation of hypsodont equids. Possibly this was as a result of the more arid conditions and the spread of open grassland in North America.

We consider Plohippus to be the sister-group to Hippidion, Dinohippus, Astrohippus and Equus. The three species of Hippidion form a monophyletic group, which are geographically restricted to South America. In this clade, Hippidion saldiasi is a sister-species of Hippidion devillei and Hippidion principale. However, H. devillei appeared first in the South American fossil record. There is no evidence of a relationship between ‘Onohippidium’ galushai, from North America, and the Hippidion group, from South America. We include ‘O.’ galushai in the Dinohippus-group. Astrohippus stocki was the sister-species of the Equus-group, which includes ‘Dinohippus’ mexicanus.

This cladistic analysis has a high congruence between the stratigraphical record and the phylogenetic hypothesis. The pectinate cladogram h (Text-fig. 8) is a good hypothesis of Equini tribe history throughout geological time.

Acknowledgements. We thank Dr Tedford for kindly allowing us to study the Frick Collection (AMNH). The authors also thank Drs J. V. Crisci, J. J. Morrone, B. Sánchez and E. Ortíz-Jaureguizar for their critical revision of the manuscript and valuable comments. We also thank Dr A. R. Milner and two anonymous referees for their criticism, comments and suggestions. The drawings were prepared by J. Arroyo. The present work was made possible through a research grant CE num. CI1*-CT90-0862, Bilateral Convention CSIC-CONICET and Spanish DGICYT PB91-0082, and grants from the Universidad Nacional del Centro, Argentina (to JLP).

REFERENCES

— 1987. La familia Equidae, Gray 1821 (Perissodactyla, Mammalia) en el Pleistoceno de Sudamérica. IV Congreso Latinoamericano de Paleontología, Bolivia, 1, 484–499.

