UPPERMOST ORDOVICIAN TO LOWER SILURIAN
GRAPTOLITE BIOSTRATIGRAPHY OF THE WYE
VALLEY, CENTRAL WALES

by JAN ZALASIEWICZ and STEVE TUNNICLIFF

ABSTRACT. The graptolite biostratigraphy of the *persculptus to magnus* Biozone interval (upper Hirnantian to lower Aeronian) in the Wye valley near Rhayader, central Wales, is described. Possible refinements to the graptolite zonal scheme are indicated, including informal subdivisions of the *acuminatus and acinaces* Biozones. Quantitative faunal assessment indicates that diplograptids:monograptid ratios are useful in indicating stratigraphical level. Selected taxa are described, including three new species, *Normallagnostus? wyensis, Pseudograflagnostus barriel* and *Orthograptus cabanensis.*

The upper Hirnantian to lower Aeronian sequence of central Wales is rich in graptolites, having been laid down in predominantly anoxic, benthos-free bottom conditions. Turbidites, mostly mud-dominated, are interspersed with graptolite-bearing laminated hemipelagic deposits (Cave 1979). The biostratigraphy of the sequence was studied in the early part of this century, by H. Lapworth (1900), Jones (1909), and Davies (1929) in particular, and a number of the standard graptolite zones were established in this region (see Rickards 1976; Zalasiewicz 1990). Though a few later studies (Sudbury 1958; Packham 1962) examined parts of the sequence in detail, further refinement of the graptolite biostratigraphy of this interval took place mostly outside Wales in the UK (the Southern Uplands – Toghill 1968; Howgill Fells – Rickards 1970; the Lake District – Hutt 1974-5) and abroad (Germany – Stein 1965; Schauer 1971; the CIS – Koren’ 1973 and references therein; Bornholm – Bjerreskov 1975; China – Chen 1984; the Canadian Arctic – Melchin 1989). The only recently published biographical section through this interval in Wales is by Baker (1981).

This study comprises a systematic re-examination of the graptolite biostratigraphy of the *persculptus-magnus* Biozone interval in the Wye valley section near Rhayader, augmented by data from other sections. The work was carried out in the course of recent BGS mapping of the Rhayader and Llanllyr district of central Wales, and a detailed account of the stratigraphy is given in Davies et al. in press. Ranges of species are given, together with descriptions and illustrations of new taxa and of established taxa in which new morphological information was discerned. Three new species are described. All figured material is lodged with the British Geological Survey, Keyworth, unless otherwise indicated.

STRATIGRAPHY
The interval studied is represented by the argillaceous Cwmere Formation (Cave and Hains 1986) and equivalent arenaceous formations (see Davies et al. in press). These comprise turbidite deposits with interspersed graptolite-bearing laminated hemipelagites.

The Cwmere Formation is underlain by the Yr Allt Formation which comprises mainly slump deposits laid down during the end-Ordovician glacio-eustatic regression (Davies et al. in press). The transition from the Cwmere to the overlying Derwenlas Formation is marked by a change from laminated ‘anoxic’ to burrowed and oxidized hemipelagites, from which graptolites are generally absent. Higher levels within the Derwenlas Formation, though, include graptolite levels associated with laminated hemipelagites.

TEXT-FIG. 1. Location of the area examined, and geological map of the Wye valley near Rhayader (after Davies et al. in press); taxa from localities A–D are shown in Text-fig. 3.

The lower part of the sequence in the Wye Valley around Rhayader (Text-figs 1, 3) comprises turbidite sandstones (the Cerig Gwynion Grits and Dyffryn Flags facies of the Caban Conglomerate Formation) and these pass up into turbidite mudstones of the Cwmere Formation, which contain increasing proportions of laminated hemipelagite upwards, up to 50 per cent near the top of the sequence.

BIOSTRATIGRAPHY

All the standard graptolite zones of the uppermost Hirnantian, Rhuddanian and Lower Acronian (Rickards 1976) have been recognized. Text-figure 2 shows the biozonal distribution of species...
within the Llanilar–Rhayader district (for further details see Davies et al. in press) and Text-figure 3 shows the succession in the Wye Valley section.

Normalograptus? persculptus Biozone
This has been recognized in the Mottled Mudstone Member of the Yr Allt Formation and within the overlying Cegi Gwynion Grits. It is characterized by the presence of the zone fossil and abundance of the narrow related form *N.? parvus* (= Glyceriograptus cf. persculptus (sensu Williams 1983) together with long-ranging climacograptid species of *Normalograptus* such as *N. normalis*.

Parakidograptus acuminatus Biozone
In the Wye valley section (Text-fig. 3), the base of the *acuminatus* Biozone occurs c. 0.5 m above the top of the Cegi Gwynion Grits. It is marked by the incoming of *Akidograptus ascensus*, occurring together with *N.? parvus* and other normalograptids. *Parakidograptus acuminatus* replaces *Akidograptus ascensus* at higher levels in the zone; this is consistent with the informal two-fold zonal subdivision recognized by Rickards (1976), with some authors recognizing two zones at this level based on the relative abundances of these two species (e.g. Bouček, 1953; Tomczykowa 1988). *Normalograptus*? *persculptus* and *N.? parvus* may not extend to the top of the *acuminatus* Biozone. The former co-occurs with *P. acuminatus* in the Wye valley section (Text-fig. 3), where it occurs as a ‘late’ morphotype, with no median septum on the reverse side (Text-fig. 5h; cf. Davies 1929). Neither *N.? persculptus* nor *N.? parvus* have been found with other presumed high *acuminatus* Biozone assemblages, which contain *P. acuminatus* (but not *A. ascensus*) and ‘Orthograptus’ cabanensis in a section (SN 9198 6317 to SN 9195 6283) adjacent to the Caban-coch reservoir.

Atavograptus atavus Biozone
This was recognized originally in the Wye section at Rhayader by H. Lapworth (1900) who termed it the *Monograptus tenus* Biozone due to a misidentification of the zone fossil. Jones (1909), working in the Rheidal Gorge, rectified this by the proposal of the name *Monograptus (= Atavograptus) atavus* for this graptolite. Re-examination of Lapworth’s type section (Text-fig. 3) suggests that only the upper part of the *atavus* Biozone (little more than 5 m thick) is currently exposed. The assemblage is characterized by *Atavograptus atavus*, *A. gracilis*, and species of *Normalograptus*.

Lagarograptus acinaces Biozone
This biozone is 65 m thick within the Wye valley (Text-fig. 3). Two successive assemblages were noted. The lower assemblage contains *L. acinaces* accompanied by normalograptids of a lower Rhuddanian aspect (*N. normalis*, *N. rectangularis*). This is present in the lower 15 m of the *acinaces* Biozone in the Wye valley. The upper assemblage contains *L. acinaces*, accompanied by a more diverse fauna including *Pribyligraptus incommodus*, *Pr. sandersoni*, *Pristigraptus fragilis pristinus*, *Coronograptus cyphus cyphus*, *Dimorphograptus conferrentia conferrentia*, *Pseudochlorograptus hughesi* (sensu Bulman and Rickards 1968), *Rhapidograptus tenuiquadratus*, and *Glyciograptus tamarticus*.

Coronograptus cyphus Biozone
This was defined originally by H. Lapworth (1900) in the Wye valley section (Text-fig. 3). Subsequent work, however, has shown that the zone fossil, *Coronograptus cyphus cyphus*, ranges down into the *acinaces* Biozone, so that different criteria are needed to determine the *acinaces-cyphus* zonal boundary. Here, the base of the *cyphus* Biozone is drawn at the incoming of monograptid of the *revolutus/austers* groups (one of the criteria used by Rickards 1976), giving a thickness of the *cyphus* Biozone in the Wye valley of 45 m. Adoption of a ‘revolutus Biozone’ in place of the *cyphus* Biozone is a possibility, and this nomenclature has been adopted on Bornholm (Bjørreskov 1975); the appearance of abundant *revolutus/a upsetting* forms is also clear on the only other recently published graptolite range-chart through Rhuddanian strata in Wales (the Llangystumdwy section: Baker 1981). Other graptolites characteristic of this interval include *Coronograptus gregarius* subspecies (e.g. Text-fig. 8a–b), *Atavograptus strachani* (Text-fig. 10a) and *Normalograptus? wyensis*.
<table>
<thead>
<tr>
<th>STAGES</th>
<th>Hirnantian</th>
<th>Rhuddanian</th>
<th>Aeronian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prevulcanian</td>
<td>vulcanian</td>
<td>capsian</td>
</tr>
<tr>
<td>BIOZONES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalograptus? persicaeus</td>
<td>X</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Normalograptus? parvulus</td>
<td>A</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Normalograptus? normalis</td>
<td>A</td>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>Normalograptus anguistus</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glyptograptus avitus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalograptus medius</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Diplograptus aff. modestissimus primus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akidograptus ascensus</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraakidograptus acuminatus</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthograptus? cahoeensis sp. nov.</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhiphidograptus extensus</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aotograptus siarius</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Aotograptus gracilius</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalograptus? rectangulatus</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lagarograptus acinous</td>
<td>A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Glyptograptus aff. incertus sensu Hutt 1974</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Dimorphograptus congerius congerius</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacladograptus hughesi sensu Balan & Richards</td>
<td>U</td>
<td>cf</td>
<td></td>
</tr>
<tr>
<td>Cystograptus vesicularis</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristograptus sandersoni</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristograptus fragilis pristicus</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyptograptus tamariensis tamariensis</td>
<td>U</td>
<td>cf. ♦</td>
<td></td>
</tr>
<tr>
<td>cf. ‘Orthograptus’ masbiliis</td>
<td>U</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rhiphidograptus ennekensis</td>
<td>U(A)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cononograptus cyphus cyphus</td>
<td>U</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pristograptus incommodus</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aotograptus cf. strachani</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus ex gr. revolutionarius</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Monograptus? austriacus ex gr. austriacus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus cf. sutchiae</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>?Monograptus macr. sp.</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cononograptus gregarius aff. miniscalus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalograptus? wyensis sp. nov.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyptograptus tamariensis cf. varians</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristograptus cf. argus argus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacladograptus andulatus</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cononograptus gregarius gregarius</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Monograptus triangulatus triangulatus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus triangulatus extremus</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus? half-walkerii</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus? sp. 1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristograptus concinnus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus ex gr. revolutionarius</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus communis communis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyptograptus? alterinis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all. Pseudoptyograptus vas</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastriites sp.</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus communis rostratus</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyptograptus cf. enolis enolis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus triangulatus fimbratus</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Normalograptus? magna</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastriites longispinus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all. Aotograptus strachani</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monograptus chrysolites</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudoptyograptus barrii sp. nov.</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEXT-FIG. 2. For legend see facing page.
Monograptus triangulatus Biozone

Strata referable to the M. triangulatus Biozone are 20 m thick in the Wye valley (Text-fig. 3). Triangulate monograptids and Coronograptus gregarius gregarius characterize this biozone. A low-diversity interval, in which no triangulate monograptids have been found, is succeeded by faunas including M. triangulatus extremus, indicative of a middle triangulatus Biozone level (cf. Sudbury 1958; Rickards 1976). Pristograptus concinnus, Monograptus communis subspecies, and Monograptus triangulatus fimbriatus (= M. pectinatus Richter according to Bjerrskov 1975) appear in the upper part of the biozone.

Normalograptus? magnus Biozone

The upper part of the Cwmere Formation in the Rhayader/Llanilar district lies within the magnus Biozone, 14 m having been proved in the Wye valley (Text-fig. 3). Graptolites from the uppermost Cwmere Formation have also been recovered from the Tyynyrail railway cutting (SN 6839 7012) and from a roadside section (SN 7324 7203) near Ysbyty Ystwyth, Dyfed.

The presence of the zone fossil is the principal criterion, and this graptolite is characteristically associated with Monograptus triangulatus fimbriatus, Pseudograyipterus barcelli and Monograptus chrysalis.

QUANTITATIVE DISTRIBUTION OF MAJOR GRAPTOLOGITE GROUPS

Graptolite faunas composed exclusively of long-ranging diplograptids of normalis type (Normalograptus) are common in the Cwmere Formation. Thus, using species ranges alone, imprecise dates spanning much of the Rhaetian/early Aeronian are obtained. However, this stratigraphical interval is characterized by a marked and progressive increase in graptolite diversity, bringing in the monograptids together with other diplograptid groups. Normalograptid-dominated assemblages should therefore be more common at lower stratigraphical levels, and so could provide a guide to age.

Here, the gross compositions of systematic collections made in the Wye valley (see Text-fig. 3) are compared, to indicate the likelihood of Normalograptus-dominated assemblages occurring within different graptolite biozones.

Graptolites from the persculptus to the top of the triangulatus Biozone were considered. Collections were made at forty-two levels in the section, the number of specimens in each collection ranging from two to more than eighty (Text-fig. 4). These were assigned to one of five categories, selected to show the gross composition of the fauna in the most practicable way.

1. Normalograptus/Glyptograptus. This category, characterized by proximal end development, includes graptolites of the normalis group, together with related forms including those related to Glyptograptus tamariscus.

2. Other diplograptids including Akiograpthus, Parakidograptus, Pseudocyclomoregropthus, and Dimorphograptus (but excluding Rhaphidograptus – see below).

3. Raphidograptus. A separate category was erected for this genus because of the observed abundance of R. toernquisti from the acinaces Biozone upwards.

4. Rhaphidograptus/Normalograptus undivided. This category is needed because of the difficulty of distinguishing distal fragments of R. toernquisti from those of normalograptids, particularly N. rectangularis.

5. Monograptids.

TEXT-FIG. 2. Range of graptolite taxa in the Cwmere Formation of the Llanilar–Rhayader district (after Davies et al. in press). X, taxon present; A, taxon abundant; R, taxon rare; U, taxon from upper part of zone; L, taxon from lower part of zone; *, taxon from undetermined level within interval marked. Arrow indicates that taxon ranges beyond the limits of this range chart. Abundance estimates are subjective.
TEXT-FIG. 3. For legend see facing page.
The number of graptolites falling into each category was counted for each collected level, converted into a percentage, and then plotted on to a composition-diagram (Text-fig. 4). The total number of graptolites collected at each level was also recorded, and plotted alongside.

The data clearly demonstrate the upward change in overall composition of the graptolite faunas. The *pseudolophus* and *acuminatus* Biozones are dominated by graptolites of the *normalis* group, and many collections contain nothing else. In the *acuminatus* Biozone, the zone-determining *Actinograptus* and *Parakidograptus* tend to be of sporadic occurrence, and to form only a small part of assemblages.

A marked change occurs at the base of the *acinaeae* Biozone. Above this level, other graptolite categories (notably monograptids and *Rhaphidograptus*) form an important part of the assemblages. Out of twenty one collections which included ten or more graptolite specimens, only one did not include any monograptids, and there were none in which neither monograptids nor *Rhaphidograptus* were observed. Out of twenty seven collections containing five or more graptolites, there were only two in which neither monograptids nor *Rhaphidograptus* were observed, and these were both of *prezyphus* Biozone age.

Thus, it appears that the gross composition of assemblages can be used, cautiously, to give some evidence of age. Such quantitative comparison of assemblages is not a standard means of correlation in Lower Palaeozoic strata (though it is more commonly used in younger strata, particularly in the Quaternary). The patterns of gross faunal change described here may be expected to provide moderately reliable indications of age within the Welsh Basin, but probably would not help correlation between regions or across facies boundaries.

SYSTEMATIC PALEONTOLOGY

Repositories. The prefixes BU and SM denote respectively collections of Birmingham University, and the Sedgwick Museum, Cambridge; specimens with prefixes DI, GSM, IZ, IZB, and PG are housed at the British Geological Survey, Keyworth, Nottingham, as are other specimens or collections not specified by number.

Type species. Original designation; *Diplograptus tamariscus* Nicholson, 1868.

Gyptograpts? alternis (Packham, 1962)

Text-figure 6e

1962 *Cladograpthus alternus* sp. nov.; Packham, p. 521; pl. 72, fig. 5, text-fig. 4f.
1972 *Pseudogyptograpthus* sp. 3; Rickards, p. 279, text-fig. 3.1.

Holotype. SM A24957, figured by Packham (1962, pl. 72, fig. 5), from the *triangulatus* Biozone of the Rheidol Gorge, Wales.

Material. One complete specimen, two incomplete fragments, all preserved in relief, from the *triangulatus* Biozone of the Wye valley section (Text-fig. 3).

Description. Aceptate diplograptid, increasing in width from 0.6 mm proximally to 1.0 mm at theca five and 1.3 mm at theca ten. **2TRDs** (= two theca repeat distances; Howe 1983) range from 1.6 mm proximally to 1.8 mm distally. The obverse side has been recognized for the first time. The sicula is visible for 1-1 mm, and

Text-fig. 3. Range-chart of graptolite taxa through the Wye valley section, Rhayader, YA, Yr Allt Formation; MMB, Mottled Mudstone Member; CyG, Cleg Gwynion Grits facies; DF, Dyrfryn Flags facies; CF, Cwmere Formation; DF, Derwenlas Formation. *•* identified; cf., qualified identification; ?, doubtful identification.
TEXT-FIG. 4. Quantitative distribution of major graptolite groups through the Cwmere Formation in the Wye valley section.
extends to just above the theca 1st aperture; its lateral wall is free for just over half its length below theca 1st. The thecae approach a glyptograpid morphology, with straight interthecal septa and rounded genicula. The apertures are not well preserved, but appear somewhat everted.

Discussion. The material appears conspecific with the single specimen described by Packham (1962), though there are slight dimensional differences; the latter is a little broader proximally and slightly more densely thecate. The length of the lateral sicula wall exposed beneath th1 suggests a relatively high origin for that theca, and thus affinity with the genus *Glyptograpthus* rather than *Normalograpthus* (see discussion of the latter below).

The material also seems conspecific with the specimen figured by Rickards (1972) as *Pseudoglyptograpthus* sp. 3. In that specimen, some distal thecae show concave suprageneric walls;
this feature is not obvious in the material described here. If it is not due to preservation, it may indicate that Rickards' generic determination is more appropriate for this species.

All material assigned to this taxon comes from the middle or upper part of the triangulatus Biozone (Packham 1962; Text-fig. 3), making this rare but conspicuous aseptate species of potential biostratigraphical importance.

Glyptograptus? avitus Davies, 1929

Text-figure 5m

Discussion. The scarce material agrees well with Williams' (1983) detailed redescription, the best preserved specimen (Text-fig. 5m) showing the commonly developed bifurcating virgella. As Williams noted, the link with *Parakidograptus* suggested by Davies (1929) seems unlikely. Thecal morphology seems similar to that of the later *tanariscus* group of glyptograptids (cf. Text-fig. 6f; Packham 1962).

Type species. By original designation, *Climacograptus scalaris normalis* Lapworth, 1877.

Discussion. The recognition of a distinctive, pointed, non-spine proximal end in many Ordovician and most Silurian diplograptids was made by Legrand (1987) and Mitchell (1987). Mitchell included proximal developments of his patterns H and I within an emended genus *Glyptograptus* (type species *G. tanariscus*), while Legrand simultaneously proposed the genus *Normalograptus*, based upon *Climacograptus normalis*. Both these genera included species with climacograptid and glyptograptid thecae, effectively rendering these styles of thecal construction (which form a continuum, see Packham 1962) subordinate to proximal end development in generic assignment. Subsequently, Melchin and Mitchell (1991) separated *Normalograptus* from *Glyptograptus* by recognizing subtly different styles of proximal development in the type species of the two genera. The difference depends primarily upon the level of origin of the 1°, that of *Glyptograptus* originating higher on the 1° than that of *Normalograptus*; this is equivalent to the difference between Pattern I and Pattern H of Mitchell (1987). Melchin and Mitchell's distinction is recognized here. However, it must be stressed that the distinction is difficult to recognize in non-isolated material, and hence assignment to one or other genus is often tentative.

Normalograptus? persculptus (Elles and Wood, 1907)

Text-figure 5a-c

Discussion. This species has been traditionally assigned to *Glyptograptus* and attributed to Salter. The proximal end morphology, though, closely resembles that of *N. normalis* and hence suggests referral to *Normalograptus*; and, as Salter neither figured nor described this species (see discussion in Williams 1983, p. 624) it is felt here that Elles and Wood (1907) should be regarded as the authors.

The name *N° persculptus* is here restricted to the relatively robust forms (widths of up to 2.0 mm in relief material) that compare closely to the type material. This form is relatively rare in the district. The specimen illustrated in Text-figure 5a, from the lower *acuminatus* Biozone, is aseptate on the reverse side of the rhodosome. This is consistent with Davies' (1929) observations of a progressive delay in the insertion of the median septum in this species. One specimen (Text-fig. 7c) seems to represent an aberrant specimen; there is no median septum on the obverse rather than reverse side and more of the sicula is exposed than normal. It consists of only three thecal pairs, and its early mortality is perhaps related to this developmental 'mistake'.
ZALASIEWICZ AND TUNNICLIFF: GRAPTOLITE BIOSTRATIGRAPHY

Normalograptus? parvulus (H. Lapworth, 1900)

Text-figure 5d–i

1900 Climacograptus parvulus H. Lapworth, p. 132, fig. 20a–c.
1907 Mesograptus modestus parvulus (H. Lapworth) Elles and Wood, p. 264, pl. 31, fig. 12a, non c–d; text-fig. 181a, non b–c.
1974 Glyptograptus persculptus (Salter); Hutt, p. 28, pl. 6, figs 9–12.
1983 Glyptograptus cf. persculptus (Salter); Williams, p. 623, pl. 66, figs 4–7.
1983 Diplograptus aff. parvulus (H. Lapworth) Storeh, p. 164, pl. 4, fig. 4, text-fig. 20.
1986 Glyptograptus persculptus (small form) (Salter); Berry, pp. 140, 141, figs 5b–f.
1988 Scalariograptus angustius (Perner); Riva, p. 232, fig. 3d–h, ‘j–v, non a–c.

Lectotype. BU 1293 (refigured herein, Text-fig. 5o), from the persculptus or acuminatus Biozone of the Rhayader district, Wales.

Discussion. Normalograptus? parvulus resembles N? persculptus, but is commonly shorter, narrower (widths of 0.8–0.9 mm proximally, 1.0–1.5 mm distally) and more densely thecate (2TRDs of 1.4–1.8 mm). It also has moderately well-developed genicular hoods (Text-fig. 5g–i) and some specimens show an undulate medium septum (Text-fig. 5e–f), the latter perhaps a result of differential compaction. It appears conspecific with those forms referred by some authors to ‘small forms’ of Glyptograptus persculptus (e.g. Williams 1983), though some of the latter attain greater lengths. The close thecal spacing of parvulus distinguishes it from contemporaneous ‘climacograptids’ such as Normalograptus normalis (Text-fig. 6a) where compression has accentuated the genicula of the former (e.g. Text-fig. 5i). N. miserabilis (Text-fig. 5k–l; this species name is retained, pending the provision of a detailed redescription of the possibly conspecific species angustius: cf. Riva 1988) is narrower (especially proximally), with a more ‘elongated’ proximal end, generally more widely spaced thecae, more nearly parallel suprageniculae, and suprageniculae that take up a greater portion of the ventral margin (suprageneric wall length to aperture height ratios of c. 3:1, compared with 2:2:5:1 for N? parvulus). More detailed study may show that N? parvulus is one end member of a single, variable species that also includes N? persculptus, as some ‘normalograptid’ populations elsewhere show considerable variation in size. If so, then the name parvulus (H. Lapworth, 1900) has priority over persculptus (Elles and Wood, 1906). For the present, the two are regarded as distinct taxa.

Normalograptus? magnus (H. Lapworth, 1900)

Text-figure 7a–g

1900 Diplograptus magnus H. Lapworth, p. 132, text-fig. 21a–d.
1907 Diplograptus (Mesograptus) magnus (H. Lapworth) Elles and Wood, p. 266, pl. 31, fig. 14a–c, text-fig. 183a–b.
1970 Diplograptus magnus H. Lapworth; Hickards, p. 35, pl. 3, fig. 8. 1974 Diplograptus magnus H. Lapworth; Hutt, p. 32, pl. 5, fig. 6; pl. 6, figs 7–8, 14.
1977 Diplograptus magnus H. Lapworth; Hickards et al., pl. 3, figs 1, 5 [not described].

Lectotype. BU 1295. Effectively designated Elles and Wood (1907) in their description of fig. 31, fig. 14a. The specimen was originally figured by H. Lapworth (1900, text-fig. 21b). It originated from the:imbris (= magnus) Biozone of the River Wye section, Rhayader, Wales.

Material. Twenty seven specimens in partial to full relief from the type locality in the Wye valley (Text-fig. 1). Twenty two specimens in slight relief from the magnus Biozone in the Towygraig railway cutting (Text-fig. 1). None of the material shows significant tectonic deformation.

Revised diagnosis. Large diplograptid (s.l.) with proximal end of Normalograptus appearance, expanding rapidly from, normally, <1.0 mm to c. 3.0 mm; exceptionally, specimens reach >4.0 mm in width. Theca relatively closely spaced (2TRDs of c. 1.3–1.4 mm proximally to
TEXT-FIG. 6. A–D, Pseudoglyptograptus barriei sp. nov. murgus Biozone; Tyn-y-graig railway cutting. a, JZ 8048. a, JZ 8457, holotype. b, c, JZ 8283. c, JZ 8456. d, Glyphograptus? alternis Packham. JZ 9915; triangulatus Biozone; Wye valley section. e, Glyphograptus tamaricus cf. varius Packham. JZB 851; cyphus Biozone; Wye
Table 1. Dimensions of populations of *Normalograptus*? *magnus* (in mm).

<table>
<thead>
<tr>
<th></th>
<th>Wye Valley</th>
<th>Lectotype</th>
<th>Tynygrrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width prox.</td>
<td>06-08</td>
<td>07</td>
<td>08-10</td>
</tr>
<tr>
<td>Width th5</td>
<td>14-18</td>
<td>19</td>
<td>16-20</td>
</tr>
<tr>
<td>Width th10</td>
<td>20-25</td>
<td>28</td>
<td>17-28</td>
</tr>
<tr>
<td>Width th20</td>
<td>21-31</td>
<td>41</td>
<td>23-32</td>
</tr>
<tr>
<td>Width max</td>
<td>74</td>
<td>43</td>
<td>52</td>
</tr>
<tr>
<td>2TRD prox.</td>
<td>13-15</td>
<td>13</td>
<td>13-15</td>
</tr>
<tr>
<td>2TRD ths-7</td>
<td>12-16</td>
<td>15</td>
<td>14-17</td>
</tr>
<tr>
<td>2TRD th10-12</td>
<td>14-18</td>
<td>15</td>
<td>15-19</td>
</tr>
<tr>
<td>2TRD th20-22</td>
<td>15-20</td>
<td>18</td>
<td>16-21</td>
</tr>
</tbody>
</table>

1.6–2.0 mm distally), approximately glyptograptid throughout, with only slight to imperceptible flattening of genicula distally. Rhabdosome partially septate on the reverse side.

Description. The rhabdosome shows rapid expansion from a moderately slender proximal end; dimensions are given in Table 1. Considerable variation in width was found. The lectotype is the most robust specimen seen, with a maximum width of 43 mm; more commonly, maximum widths range from 22–33 mm. Thecae are sigmoidally curved (approximately 'glyptograptid'), with distinct genicula throughout. There is only slight flattening of the genicula distally; this is more obvious in flattened (Text-fig. 7a–c) than in relief (Text-fig. 7b–c) material. In relief material, apertures appear simple, distally-facing and slightly everted; some flattened material, though, shows traces of what appear to be slender geniculatoushoods as spine-like processes extending from the geniculum (Text-fig. 7c). The proximal end is of *Normalograptus* aspect, with th1 growing downwards below the aperture of the sicula before turning upwards, and th2 growing upwards from close to its origin, leaving part of the sicula wall exposed. The sicula is exposed in the obverse side for 1.4–1.5 mm (Text-fig. 7a, f–o); material where it is 'pressed through' shows it to have a total length of c. 20 mm (Text-fig. 7e). The median septum is complete on the obverse side, wavy over the first five thecal pairs and subsequently straight (Text-fig. 7r–o); on the reverse side it is partial, starting from the level of the eighth thecal pair in the toptype material (Text-fig. 7b).

Discussion. As noted by Hutt (1974), the lectotype is an abnormally large specimen (> 4 mm wide distally), which underlines the considerable variation in maximum width exhibited.

This species is scarcely biform, and thus is not a true ‘Diploegraptus’ in the old, form-generic, meaning of this taxon. In this respect, it differs from approximately contemporary robust diplographtids such as 'Diploegraptus’ thuringicus Eisel in München, 1952, and ‘Diplograptus’ tscherskyi tscherskyi Obut and Sobolevskaya and thus seems not closely related to them, contrary to the suggestion of Melchin and Mitchell (1991). A more similar species is 'Diplograptus’ fessianus’ Desio, 1940 (see also Storch 1983) which, however, appears to have somewhat more strongly geniculate thecae proximally and a smaller (c. 1 mm) sicula.

‘Diplograptus’ *magnus* is the type species of Neodiplograptus Legrand, 1987, erected to encompass biform diplographtids with ‘keroblastic’ (i.e. normalograptid s.l.) proximal structure. However, this redescription shows that *magnus* has only a slightly biform character, scarcely more than in species such as Normalograptus? persculptus (compare Text-figures 5a–c and 7b–c) and is morphologically dissimilar to truly biform diplographtids such as 'Diplograptus’ sp. 1 (this paper). ‘Glyptographtus’ simius simius’ (Nicholson, 1869) and ‘D.’ thuringicus. Thus, it is unsatisfactory taxon upon which to erect the genus intended, and Neodiplograptus is here regarded as a junior synonym of
Normalograptus. It is not assigned to Glyptograptus, as the proximal end of magnus appears to resemble more that of the normalis group of graptolites than that of the tamariscus group (compare Text-figure 6f of G. Tamariscus cf. varians).

Normalograptus wyensis sp. nov.

Text-figure 6M–N

Derivation of name. After the River Wye, on which the type locality is sited.

Holotype. JZB 792 (Text-fig. 6M–N); from the cyphus Biozone of the Wye valley section near Rhayader, Wales (Text-fig. 2).

Additional material. Six other well-preserved rhabdosomes from the type locality.

Diagnosis. A medium-sized, moderately densely thecate and rapidly expanding diplograptid with well-developed genicular hoods and a partial, proximally wavy, median septum.

Description. The longest rhabdosome seen is incomplete distally, and is 12 mm long. Widths are 0.6–0.8 mm proximally, 0.9–1.2 mm at th5 and 1.4 mm at th10, being parallel-sided thereafter. 2TRD's are 1.1–1.5 mm proximally, and 1.6 mm at th10–12. The proximal end appears to be of Normalograptus type. The sicaula is visible for 0.9 mm of its length on the obverse side, with 0.2–0.4 mm of its lateral wall being free below th1. The proximal few thecae have sigmoidal interthecal septa, sharp genicula, and suprageneric walls which are slightly inclined in most preservational aspects. The apertures are simple, without lappets, though the ventral apertural wall extends to form a genicular hood (Text-fig. 6i). Distal thecae are similar except that suprageneric walls are parallel to the rhabdosome. The median septum extends from the sicaula apex on the obverse side and is wavy over the first four thecal pairs, distally becoming straight; on the reverse side it extends from the base of the fourth thecal pair.

Discussion. This species is placed questionably in Normalograptus. The waveness of the median septum proximally, and the eversion of the apertures (through the production of genicular hoods), indicates possible affinities with Clinochlamycograptus Bulman and Rickards, 1968. However, the straightness of the suprageneric walls, and their outwards leaning in the proximal part of the rhabdosome, suggest otherwise, while genicular hoods have also been observed in normalograptids such as _N? parvulus_ (see above).

Comparison with other species is hampered by the lack of detail concerning thecal and median structures in most published accounts. _Clinochlamycograptus_ rectangularis, _C._ stenotegulatus Churkin and Carter, 1970, and _C._ medius brevicaudatus Churkin and Carter, 1970, are similar in their rate of expansion, but reach greater widths. _Clinochlamycograptus_ ianischewskyi Obut, 1949, expands less rapidly. _Clinochlamycograptus_ scalaris ferganensis Obut, 1949, has approximately similar dimensions but (as figured by Melchin 1989) has a straight median septum proximally. _Normalograptus normalis_ (Lapworth, 1876) (see Text-fig. 6o) and _N? mirskenysius_ (Obut and Sobolevskaya, 1967) have more widely spaced thecae.

Genus Pseudoglyptograptus Bulman & Rickards, 1968

Type species. By original designation, Glyptograptus (Pseudoglyptograptus) var Bulman and Rickards, 1968.

Pseudoglyptograptus barriei sp. nov.

Text-figure 6A–D

1972 _Pseudoglyptograptus_ sp. 2; Rickards, p. 278, text-fig. 3.2.

Derivation of name. After Dr Barrie Rickards, who first recognized this species as a distinct taxon.

Holotype. JZ 8457 (Text-fig. 6a). The specimen, preserved in part relief, originated from the magnus Biozone of the Tyngraig railway cutting, Dyfed, Wales (Text-fig. 1).

Additional material. Eleven other specimens from the type locality; two specimens from the magnus Biozone of the Wye valley section (Text-fig. 3); two probable specimens from the magnus Biozone section at Ysbyty Ystwyth, Dyfed (Text-fig. 1).

Diagnosis. A moderately sized pseudoglyptograptid, increasing in width from under a millimetre proximally to 20 mm distally. Thecae with sharp genicula, concave suprageneric walls and marked lappets proximally which become less pronounced distally. Median septum from the second thecal pair, slightly wavy proximally and straight distally.

Description. Widths proximally are 0.7–0.9 mm, 1.1–1.4 mm (rarely to 1.8 mm) at th5, 1.5–1.8 mm at th10 and 2.0–2.1 mm at th20. 2TRDs are 1.3–1.8 mm proximally, 1.6–1.9 mm at th5–7, 1.9–2.0 mm at th10–12 and 2.0 mm at th20–22. The proximal end seems to be of Normograaptus type, with part of the lateral wall of the
sícula exposed below th1. The sícula is exposed on the obverse side for 0.6 mm, to just below the th1 aperture (Text-fig. 6a). The proximal five or six thecae are sigmoidally curved, with intertheal septa that are convex outwards, a sharp geniculum and a supragenicular wall that has a concave curvature which is most pronounced just below the aperture. Prominent apertural lappets are developed (though these may be more accurately described as embayed lateral aperture margins, the ventral aperture margin apparently being smooth) (Text-fig. 6b-d). Well-preserved material (Text-fig. 6b) shows the dorsal thecal wall extending upwards to form a genicular hood. Distally, the apertural lappets become much less prominent, and the supragenicular walls somewhat less concave. The median septum begins from the second thecal pair on both the obverse and reverse sides. It is slightly wavy adjacent to the second and third thecal pairs, and is straight distally.

Discussion. The material appears conspecific with the *Pseudoglyptograptus* sp. 2 of Rickards (1972), also from the *magnus* Biozone of the Rhayader area, though Rickards’ figured specimen is slightly narrower and more densely thecate distally. *Pseudoglyptograptus* sp. nov. of Melchin (1989) from the Cape Phillips Formation of Arctic Canada is also similar and undoubtedly closely related; it is significantly more robust, though, with a width of 1.1 mm proximally and 2.3 mm at th10. It also occurs at higher levels, equivalent to the *leptotheca* and *convolutus* Biozones of the British sequence (Melchin 1989, table 1 and fig. 4). *Pseudoglyptograptus* sp. 1 of Rickards (1972) also resembles the taxon under discussion in general thecal and rhabdosomal characters, but is considerably narrower. These taxa differ slightly from the type species of *Pseudoglyptograptus*, *P. tus* (Bulman and Rickards, 1968), in having more distinct genicula and more obvious apertural lappets. The former feature, in particular, means that poorly preserved or compressed material resembles comparably-sized species of *Normalograptus* (e.g. *N. normalis*) rather than *Glyptograptus*.

Genus RHAPHIDOGRAPTUS Bulman, 1936

Type species. By original designation, *Climacograptus torquisti* Elles and Wood, 1906.

Rhaphidograptus torquisti (Elles and Wood, 1906)

Text-figure 8e–f

Discussion. Most material of *R. torquisti* is consistent with the detailed descriptions of Hutt (1975) and Bjerrskov (1975). However, one population from a *triangulatus/magnus* Biozone interval within the Tyngra railway cutting (Text-fig. 1) shows considerable variability in virgellar form. Most members of this population (Text-fig. 8e–g) possess a virgella similar to that described by Bjerrskov (1975) – an extended structure, up to 12 mm long, that expands away from the sícula to a width of 0.15–0.25 mm and that is twisted into a more-or-less regular clockwise spiral. Bjerrskov’s published electron micrograph (1975, pl. 60) indicates a roughly triangular cross-section in this structure. One specimen from Tyngra, however, (Text-fig. 8f) shows a curved, horn-like virgella that is strongly thickened at its contact with the sícula, and growing out at an angle to the axis of the rhabdosome. In another, remarkable specimen (Text-fig. 8f–j), the virgella itself is not elongated, and an analogous, but wider, lanceolate structure grows out from the side of the sícula on its antivirgellar side.

This kind of morphological plasticity is unexpected, and further consideration of such phenomena may provide insight into the developmental and skeleton-building mechanisms of graptolites.

Diplograptids of uncertain generic affinity

Graptolites under this heading include: (i) diplograptids with markedly biform thecae and a proximal end of *Normalograptus* (s.l.) type; *Neoptychograptus* was suggested for these by Legrand (1987), but the name is regarded as a synonym of *Normalograptus* (see above); and (ii) diplograptids with a proximal end of *Normalograptus* (s.l.) type and orthograptid thecae distally. No generic or subgeneric name has yet been proposed for this combination of features.
Diplograptus aff. modestus primus Mikhaylova, 1980

Text-figure 9a-c

Material. Eleven specimens from the Cwmere Formation (Acuminatus-atarus biozones) at Lan Goch, northeast of Rhayader, Powys (SO 0169 7019).

Description. The rhabdosome is rapidly expanding. Proximal widths are 0.8–1.1 mm, widths at th5 are 1.4–2.1 mm, 2.2–2.5 mm at th10, and up to 2.6 mm distally. 2TRDs are 1.1–1.2 mm proximally, 1.3–1.4 mm at th5–7, and 1.3–1.5 mm at th10–12. The sicula, seen in one specimen (Text-fig. 9c) is 1.6 mm long, reaching to just above the aperture of th2. The proximal end appears to be of Normalograptus type (sensu Melchin and Mitchell 1991). The thecae are bifomite. The proximal e. five thecal pairs are of broadly amphiploidy aspect (though lacking apertural lappets), with sharp genicula, above which the supragenericular walls are outwardly inclined. Distally, the thecae are orthogryptid, with straight ventral walls and apertures roughly perpendicular to the thecal axes.

Discussion. The gross rhabdosome shape and thecal spacing of this taxon are similar to that of *Diplograptus* modestus modestus Lapworth, 1876. Lapworth's figured type of *'D'. m. modestus* is missing (Strachan 1971) and the concept of the species has been taken by Elles and Wood's (1997) redescription, in large part illustrated by material from Lapworth's collection. Re-examination of this (Type) material has shown that thecae throughout the rhabdosome are essentially uniform, having concave infragenicular walls separated from straight, outward leaning supragenicular walls by distinct genicula; this appears to be a primary feature and not the result of differential compaction following stipe torsion. Thus the material from central Wales is probably not closely related to *'D'. m. modestus* (sensu Elles and Wood). In its strongly biform nature it resembles *'D'. modestus primus* Mikhaylova from the Acuminatus Biozone of Kazakhstan (figured in Koren et al. 1980) which is narrower, most specimens not exceeding 1.7 mm in width.

Orthograptus cabanensis sp. nov.

Text-figure 9f-1.

Derivation of name. After Caban coal reservoir, by which the type locality is sited.

Holotype. DJ 8991 (Text-fig. 9f), preserved in slight relief, and originating from the Cwmere Formation (upper Acuminatus Biozone) of the Craig Fawr track section (SN 9194 6296) (Text-fig. 1).

Additional material. Seventeen other specimens from the type section (Text-fig. 1); one specimen from a nearby stream section (c. SN 9242 6370).

Diagnosis. A graptolite with a relatively wide proximal end of Normalograptus type, th1 and 1" that are everted, and orthogryptid thecae subsequently.

Description. Widths are 1.2–1.35 mm at the first thecal pair, 1.7–1.85 mm at the fifth, and 1.7–2.0 mm at the tenth. 2TRDs are 1.5–1.7 mm proximally, 1.8–2.0 mm at th5–7 and 2.2 mm at th10–12. The proximal end appears to be of Normalograptus (s.l.) type (sensu Melchin and Mitchell 1991), with c. 0.3 mm of the sicula wall free below th1, and a convex curvature to the proximal ventral walls of th1 and 1". However, the ventral thecal walls of th1 and 1" are distinctive in being concavely curved below the apertures, which are everted and appear convex in outline. Distally, thecae appear basically orthogryptid, though traces of genicula (possibly compactional artefacts) are visible in some orientations; the apertures also partly 'endose' the ventral walls of succeeding thecae. Details of the sicula and median septum were not apparent.

Discussion. This species closely resembles the *Orthograptus* sp. nov. of Melchin (1989, fig. 6c–f) from the Atnatus Biozone of Arctic Canada. That species has a narrower proximal end, though, and the apertural portions of th1 and 1" appear simple, not everted. These differences are also shared by *Gl. aff. nanus* Mu and Ni from the Acuminatus Biozone of Arctic Canada (Melchin 1989, Fig. 5c),
which is also narrower and more densely thecate distally. Orthograptus illusiris Koren’ and Mikhaylova, 1980 from the acuminate Biozone of Kazakhstan (Koren’ et al. 1980, p. 158) and Diplograptus aff. parvulus (H. Lapworth, 1900) figured by Storch (1983, pl. 4, fig. 4; text-fig. 20) from the ascensus and acuminate Biozones of Bohemia are further generally comparable, but are smaller and more densely thecate, with simple th1 and th2.

The ‘Orthograptus truncatus abbreviatus’ figured by Hutt (1974, p. 33, pl. 8, figs 9–10; text-fig. 8, fig. 9) from the acuminate Biozone of the Lake District may also be related. O. truncatus abbreviatus s.s. is an Upper Ordovician taxon within the amplexicaule group of Orthograptus (sensu Mitchell 1987), possessing Mitchell’s pattern G astogeny. This group reportedly became extinct during the end-Ordovician glaciation (Melchin and Mitchell 1991). The material figured by Hutt is not well-preserved proximally, but possesses a pointed proximal end more reminiscent of Normalograptus than of Orthograptus and the single proximal thecal spine figured (Hutt 1974, text-fig. 8, fig. 9) may be a preservational feature. In rhombosome dimensions, it most resembles Orthograptus sp. nov. of Melchin (1989).

This group of ‘orthograptids’, taken as a whole, appears to be stratigraphically useful, seemingly being confined to the acuminate and atavus biozones worldwide. The proximal end, with its initial rounding, contrasts with that of later ‘orthograptids’ (e.g. O. ‘insectiformis’ and O. ‘cypereoides’) where the earliest visible portions of th1 and th2 are straight, giving a V-shaped outline.

cf. ‘Orthograptus’ mutabilis Elles and Wood, 1907

Text-figure 6a

cf. 1907 Orthograptus mutabilis Elles and Wood, p. 232, pl. 29, fig. 1a–c; non d; text-fig. 15a–c.

non 1974 Orthograptus aff. mutabilis Elles and Wood; Hutt, p. 33, pl. 16, fig. 6; text-fig. 8, fig. 10.

Material. Two probable distal fragments from the acuminate Biozone of the Wye valley section (Text-fig. 3); one proximal end from the cyphus Biozone of the same section.

Discussion. The single, well-preserved proximal end compares well with the type material, though is also indistinguishable from the proximal part of early petalopatids (e.g. P. minor, P. ovatolongatus), which have been recorded from the succeeding triangularus Biozone in Britain (Hutt 1975; Rickards 1976). The cyphus Biozone record of P. minor in Germany (Schauer 1971) may also represent this taxon. A close evolutionary connection between ‘O.’ mutabilis and the petalopatids is highly probable. The stratigraphically younger ‘O.’ aff. mutabilis of Hutt (1974) is significantly different and may not be closely related; its proximal end is much narrower and the ventral margins of th1 and th2 are straight, rather than concavely curved.

Genus Atavograptus Rickards, 1974

Type species. By original designation of Rickards 1974, p. 141; Menograptus atavus Jones, 1909.

cf. Atavograptus atavus (Jones, 1909)

Text-figure 10c

Discussion. Three distal fragments from the cyphus Biozone of the Wye valley section (Text-fig. 3) are notable for their poorly defined genicula and marked eversion of the thecal apertures (Text-fig. 10c). In this they differ from ‘typical’ atavus (Text-fig. 10a), though some material from Jones’ type

collection shows comparable features (Text-fig. 10b). The material also may be closely related to *Monograptus* sp. 1, from the *triangulatus* Biozone of the Wye valley (Text-fig. 10d; see below), which differs in having even more markedly everted thecal apertures and a greater amount of thecal overlap.

Atavograptus gracilis Hutt, 1975

Text-figure 10e–f

1970 *Monograptus* sp. 2, Hutt and Rickards, p. 76, text-fig. 3c–f.
1975 *Atavograptus gracilis* Hutt, p. 63, pl. 14, fig. 4; text-fig. 14, fig. 4.
non 1982 *Atavograptus gracilis* Hutt; Lenz, p. 48, figs 4k–m, l, 19m–t.

Holotype. SM A60417, from the *atavus* Biozone of School Beck, Lake District, England.

Material. Over twenty fragmentary specimens, preserved in slight relief, from the *atavus* Biozone of the Wye valley section (Text-fig. 2), including one proximal end probably belonging to this species.

Revised diagnosis. Long, slender, gently curved rhabdosome (normally dorsally, rarely ventrally). Maximum width 0.8 mm, usually 0.5–0.6 mm. Probably long, slender sicula. Overlap increases, thecal spacing decreases, distally. Proximal and mesial thecae with fairly sharp genicula and small apertures, distal thecae with more flowing genicula.

Description. A single proximal end, probably referable to this species, has been found (Text-fig. 10b). The sicula is 3.5 mm long and 0.2 mm wide at its base. Th1 originates 1.4 mm from its base, its aperture being 0.7 mm above the sicula apex. Dorso-ventral width varies from 0.175 mm at th1 to 0.225 mm at th4, the 2TRD proximally being 0.4 mm. Overlap proximally is one-eighth. More distal fragments range in width from 0.2 to 0.5 mm, rarely up to 0.6 mm, the increase in width being attained slowly. Most fragments have a gentle dorsal curve, one longer fragment having a moderate ventral curve distally. Thecae are more widely spaced proximally (2TRD c. 3.0 mm) than distally (2TRD 2.2–2.5 mm). Overlap increases distally from about one-fifth to one-quarter. Apertures seem simple, and approximately perpendicular to the thecal axis, but they can appear either slightly everted or slightly introverted in different preservational modes. Genicula are present throughout, appearing sharper proximally.

Discussion. Hutt’s (1974) material appears conspecific, though attaining somewhat greater maximum widths (to 0.8 mm). The type material was not well enough preserved to show details of the sicula or of the variation in thecal spacing and overlap distally noted here. Lenz’s (1982) material ascribed to *A. cf. gracilis* is not conspecific, having greater overlap, a shorter sicula, and a more robust proximal portion. *A. gracilis* may be distinguished from *A. atavus* by its narrower rhabdosome, smaller amount of overlap and widely spaced proximal thecae.

The proximal end (Text-fig. 10h), with its long, slender sicula (in contrast to the short sicula of *A. atavus*) suggests a link with *Coronograptus* or *Lagarograptus*.

Genus Pribylograptus Obut and Sobolevskaya, 1966

Type species. By original designation of Obut and Sobolevskaya (1966, p. 33) *Monograptus incommodus* Törnquist, 1899.

Pribylograptus sandersoni (Lapworth, 1876)

Text-figure 8c–d

1876 *Monograptus Sandersoni* Lapworth, p. 320, pl. 11, fig. 2a–e.
1911 *Monograptus Sandersoni* Lapworth; Elles and Wood, p. 404, pl. 39, fig. 10a–e; text-fig. 271a–d.
1970 *Pribylograptus sandersoni* (Lapworth); Hutt and Rickards, text-fig. 2b.
1970 *Monograptus sandersoni* Lapworth; Rickards, p. 66, text-fig. 14, fig. 25.
Material. Three distal fragments, in relief, from the acinaces Biozone of the Wye valley section (Text-fig. 3).

Description. The best-preserved fragment has a dorso-ventral width of 0.6 mm and a 2TRD of 2.4 mm. The thecae are gently sigmoidally curved, the most marked, convex, curvature occurring just below the aperture. The apertures are moderately laterally expanded, but otherwise essentially simple, without the development of horns or lappets; they are slightly introverted.

Discussion. This material clearly allows the inference (made by Rickards 1970) of the transitional nature of this species between (probably) Atavograptus and 'typical' Pritylograptus which possesses distinct lateral horns (Rickards and Rushton 1968). These lateral horns appear to be genuine features and not artefacts of interpretation as stated by Loydell (1991).

Monograptus s.l. sp. 1

Text-figure 16a

Material. Ten distal fragments, in partial to full relief, from the triangulatus Biozone of the Wye valley section (Text-fig. 3).

Description. The distal stipe fragments are up to 70 mm long. These are approximately straight, or possess a very slight ventral curvature. Widths range from 0.6 mm to 1.2 mm, and 2TRDs range from 2.1 mm to 2.5 mm (rarely to 2.8 mm). Thecae are long straight tubes, inclined at c. 15° to the rhabdosome axis, overlapping by just over a half in the most proximal fragment to two-thirds or just over in most fragments. The apertures are markedly everted, slightly concave in outline, and at an angle of c. 45° to the thecal axis.

Discussion. This graptolite to some extent resembles Lagarograptus acinaces or Coronograptus cyphus cyphus in terms of general dimensions and degree of thecal overlap, but differs in having markedly everted apertures. It differs from Pristograptus concinnus in its greater thecal overlap and more markedly everted apertures. It may be related to the cf. Atavograptus atavus (described above) from the underlying cyphus Biozone.

Acknowledgements. The authors thank members of the British Geological Survey's mapping programme in central Wales, particularly Dr R. A. Waters, for encouragement and assistance, and Dr A. W. A. Rushton, for useful discussions. This paper is published with the permission of the Director of the British Geological Survey (NERC).

REFERENCES

ELLS, G. E. and WOOD, E. M. R. 1901–1918. British Graptolites. Monograph of the Palaeontographical Society, 55 (260), 1901; 56 (265), 1902; 57 (271), 1903; 58 (277), 1904; 60 (288), 1906; 61 (297), 1907; 62 (305), 1908; 64 (316), 1911; 66 (323), 1912; 67 (327), 1914; 70 (339), 1918, i–clxxv i–1–539.

and Merkureva, A. P. 1968. Graptolitit i landover v kurnakh burovoykh skvazhin noryl’skogo rayona. Trudy Instituta Geologii i Geofiziki Sibirskoe Otdelenie, 1–137. [In Russian].

——. 1983. The genus Diplograptus (Graptolithina) from the lower Silurian of Bohemia. Vestnik Ústrednho Ústavu Geolóngického, 58, 159–170.

J. A. ZALASIEWICZ*
S. P. TUNNICLIFF
British Geological Survey
Keyworth, Nottingham NG12 5GG, UK

*Present address
Department of Geology
University of Leicester
University Road
Leicester LE1 7RH, UK

Typescript received 2 August 1993
Revised typescript received 10 February 1994