AGNOSTID TRILOBITES FROM THE LOWER ORDOVICIAN KOMSTAD LIMESTONE FORMATION OF KILLERÖD, SCANIA, SWEDEN

by PER AHLBERG

ABSTRACT. Geragnostus tullbergi (Novák 1883), G. cf. ingricus (Schmidt 1894), Arthrorhachis lentiformis (Angelin 1851), and Oculagnostus fricii (Holub 1908a) are described from the Lower Ordovician Komstad Limestone Formation at Killeröd, south-east Scania (Skåne), southern Sweden. Geragnostula is a subjective junior synonym of Geragnostus. Conodonts and associated polymorid trilobites suggest the strata yielding these agnostids correlate with the Asaphus expansus Zone or basal A. 'raniceps' Zone of the lower Kunda Stage (uppermost Arenig or lowermost Llanvirn).

Agnostid trilobites ranged from late early Cambrian to late Ordovician (pre-Hirnantian Ashgill). They reached a maximum diversity during the Middle Cambrian and early Upper Cambrian, and they are among the most significant faunal elements in Cambrian biostratigraphy. Because of their abundance, wide geographic distribution, and relatively rapid evolution, they afford the best means of correlating Cambrian strata, especially sequences of oceanic and open-shelf facies (e.g. Robison et al. 1977; Rowell et al. 1982). The value of agnostids as stratigraphic indicators in the Middle Cambrian was well demonstrated by Westergård (1946), Robison (1964, 1984) and Öpik (1961, 1979). The biostratigraphical potential of Upper Cambrian agnostids was discussed by Shergold (1981).

Agnostid trilobites are frequently encountered in Ordovician rocks, and a number of species appear to have good biostratigraphic potential. In the Ordovician of Scandinavia, agnostids are generally rare, but they are known to range up to the base of the Hirnantian (see e.g. Olin 1906; Kielen 1960; Nilsson 1977; Owen 1981). In certain beds in the Scandinavian Ordovician, however, agnostids are comparatively common, notably in the Arenigian Megistaspis planilimbata Zone at Lanna in Närke, south-central Sweden (Wiman 1905; Tjernvik 1956) and in the Ashgillian Jonsörför Formation and correlative strata (Linnarsson 1869; Olin 1906; Kielen 1960; Bergström 1973). In addition, the late Johan Gunnar Andersson (1874–1960), a famous Swedish geologist and archaeologist, assembled a large collection of well-preserved and stratigraphically important agnostids together with a variety of other trilobites from the Lower Ordovician Komstad Limestone Formation at Killeröd, south-east Scania (Skåne), southern Sweden (text-fig. 1). The material, henceforth referred to as the J.G.A. collection, was probably collected around the turn of the century. The agnostids of the J.G.A. collection form the basis of this paper.

GEOLOGICAL SETTING

The name Komstad Limestone Formation was established by Jaanusson (1960, p. 300) for a sequence of limestones between the Arenigian Töyen Shale (formerly Lower Didymograptus Shale) and the Llanvirnian Upper Didymograptus Shale in Scania (text-fig. 2). The formation may be considered as a thin tongue of the ‘orthoceratite limestone’ of other Palaeozoic districts of Sweden, and it was previously called the Orthoceras, ‘orthoceratite’, or Limbata Limestone. It is widely distributed in Scania and on Bornholm, Denmark, and consists mainly of a grey to black calcilutite with abundant skeletal fragments (Hadding 1958, pp. 177–181).
The stratigraphy and faunas of the Komstad Limestone have been studied intermittently since the middle of the nineteenth century (e.g. Angelin 1851, 1854; Funkquist 1919; Ekström 1937). Regnél (1960) and Bergström (1982) summarized the stratigraphy and palaeontological characteristics of the formation as known at the time. A recent detailed account is that of Nielsen (1985), who also reviewed the history of earlier geological work. Biostratigraphic studies have demonstrated that in Scania the Komstad Limestone can be assigned to the zones of *Megistaspis simon*, *M. limbata*, and *Asaphus expansus* of the Volkhov and basal Kunda Stages (Nielsen 1985; text-fig. 2 herein; see Jaanusson 1982, fig. 4 for stratigraphy). It must also be emphasized that a fauna suggesting a correlation with the overlying *Asaphus raniceps* Zone has recently been obtained from the uppermost beds of the formation at Killeröd, south-east Scania (Arne Thorshøj Nielsen, Copenhagen, written communication October 1986).

The agnostid trilobites described in this paper were collected near an abandoned quarry at Killeröd, about 14 km west of Simrishamn (text-fig. 1). The quarry (national grid reference X 61616 Y 13944) corresponds to locality 2 of Regnél (1960, fig. 4) and has been briefly described by Bergström (1982, p. 193). Material was collected from a section (J.G.A. coll. *in situ*) and from seven boulders (J.G.A. coll. boulders 1–7). J.G. Andersson took great care to label the fossils according to the boulder from which they were collected. Boulders 1–6 are labelled ‘Killeröd’. Outcrop material and boulder 7 are labelled ‘Killeröds kanal’. Kanal is the Swedish word for drainage ditch, and it is likely that the fossils labelled Killeröds kanal were recovered from a locality adjacent to the ditch running in a NNE-SSW direction east of the quarry (see Regnél 1960, fig. 4). No details are known as to where the fossils labelled Killeröd were found. Faunal evidence, however, indicates that all material was collected from about the same stratigraphic position in the uppermost part of the Komstad Limestone (see below).
AGE OF THE FAUNA

The agnostid trilobites include the following taxa: Geragnostus tullbergi (Novák 1883), G. cf. ingricus (Schmidt 1894), Arthrorhachis lentiformis (Angelin 1851)?, and Oculagnostus frici (Holub 1908a). The associated fauna is dominated by diverse polymerid trilobites, of which the following are common to abundant: Pterygotemotus sclerops (Dalman 1827), Raymondaspis limbata (Angelin 1854), and Celmus cf. granulatus Angelin 1854. Other less common or rare trilobites are Trinucleoides cf. praecursor (Poulsen 1965), Asaphus sp., Nileus sp., Ampyx sp., in addition to pliomerd, remopleuridotid, and cybelid trilobites. The composition of the trilobite fauna is closely comparable to that of the Volkovian Skelbro Limestone fauna on Bornholm, Denmark (Poulsen 1965). However, the record of Pterygotemotus sclerops and Asaphus sp. suggests that it is younger. In Baltoscandia, P. sclerops is largely restricted to the Asaphus expansus Zone of the basal Kunda Stage. It appears, however, to range into the overlying Asaphus ‘raniceps’ Zone (Tjernvik and Johansson 1980, p. 195). Asaphus sp. is probably conspecific with a new and undescribed asaphid from the uppermost part of the Komstad Limestone. At Killerröd this new asaphid is confined to strata correlative with the Asaphus ‘raniceps’ Zone (Arne Thorshøj Nielsen, Copenhagen, written communication October 1986). Thus, the trilobite assemblage suggests equivalence with the Asaphus expansus or more probably the basal Asaphus ‘raniceps’ Zone, and it is very likely that the fauna was recovered from the uppermost part of the Komstad Limestone Formation (cf. text-fig. 2).

The trilobite-based correlation is broadly supported by conodonts recovered from outcrop material, boulder 1, and boulder 6 of the J.G.A. collection. These have been examined by Dr Anita Lögren, Lund University. Outcrop material and boulder 6 yielded Baltoniodus prevariabilis medius and Eoplocognathus? variabilis. This combination is characteristic of the E.? variabilis Zone (excluding its lowermost part where B. p. norrlandicus prevails) in the conodont zonal scheme (Lögren 1978, 1985). Boulder 1 yielded Scalpellodus gracilis which is present in beds from the E.? variabilis Zone and slightly younger beds (Lögren 1978, 1985). Thus, the conodonts are indicative of the upper part of the Asaphus expansus Zone or the A. ‘raniceps’ Zone in the trilobite zonation (see Lögren 1985).
In conclusion, the polymerid trilobites and conodonts together indicate an early Kundan age (latest Arenig or earliest Llanvirn) for the agnostid trilobites described in this paper. The occurrence of *Geragnostus tullbergi* (Novák 1883) and *Oculagnostus frici* (Holub 1908a) in southern Sweden is a further indication for correlation of the Sárka Formation of Bohemia with the Kunda Stage of Baltoscandia.

The Arenigian and Llanvirnian trilobite faunas of Baltoscandia and Bohemia belong to different biogeographical provinces (Whittington 1963, 1966; Whittington and Hughes 1972; Jannusson 1979), and polymerid trilobites of these two regions have very little in common. The occurrence of identical agnostid species in Scania and Bohemia indicates that, as in the Cambrian, distribution of Ordovician agnostids may have been largely independent of the biogeographical differentiation of the benthic faunas. In this case, agnostids may prove to represent a potentially important group for correlation between various Ordovician biogeographical provinces.

SYSTEMATIC PALAEONTOLOGY

Terminology. The morphological terms used in this paper are basically those defined by Harrington et al. (*in* Moore 1959, pp. O117–O126). Additional terms for agnostid features have been defined by Ópik (1963, pp. 30–32, 1967, pp. 52–62, fig. 15), Robison (1964, pp. 515–516, text-fig. 3, 1982, pp. 134–135, text-fig. 2), and Shergold (1975, pp. 39–44, figs. 14–15). Rhachis is used instead of axis and dorsal furrow instead of axial furrow. The glabella is taken to exclude the basal lobes and the occipital band. Acrolobe is used in the sense of Ópik (1967, p. 53). The terminology of the furrows and lobes on the glabella and the pygidial rhachis follows Robison (1982). Thus, the furrows are designated F1, F2, and F3, and the corresponding lobes M1, M2, and M3, counting from either the posterior of the glabella or the anterior of the pygidium. All descriptions refer to features of the external surface of the exoskeleton unless specifically stated otherwise. The symbols amplifying the information included in the synonymy lists are explained by Matthews (1973, pp. 717–718).

Measurements. Measurements were made with a micrometer eyepiece fitted in a binocular microscope. The accuracy for all measurements is to 0.05 mm. The following symbols have been used for measured parameters (cf. Shergold 1975, pp. 47–48).

- Lc: maximum length (sag.) of cephalon
- Lbc: length (sag.) of cephalic border (incl. border furrow)
- Lac: length (sag.) of cephalic acrolobe
- G: length (sag.) of glabella
- N: distance (sag.) from rear of glabella to high spot of median node
- Wc: maximum width (tr.) of cephalon
- Wg: maximum width (tr.) of glabella
- Lp: maximum length (sag.) of pygidium, including articulating half-ring
- Lp*: length (sag.) of pygidium, excluding articulating half-ring
- Lr: length (sag.) of pygidial rhachis, excluding articulating half-ring
- Lhp: length (sag.) of the posterior pygidial border (incl. border furrow)
- Wp: maximum width (tr.) of pygidium
- Wr: maximum width (tr.) of pygidial rhachis

Repository. All illustrated specimens are deposited in the type collections of the Geological Survey of Sweden (*Sveriges geologiska undersökning*, SGU), Uppsala, Sweden.

Family METAGNOSTIDAE Jackel, 1909

Genus GERAGOUSTUS Howell, 1935

Type species. *Agnostus sidenbladhi* Linnarsson 1869 (pp. 82–83, pl. 2, figs. 60–61), from the upper Tremadocian Ceratopyge Limestone (*Apatosephalus serratus* Biozone) at Mossebo, Hunneberg, Västergötland, south-central Sweden; by original designation.

Remarks. The concept of *Geragnostus* has been discussed extensively in the literature (e.g. Palmer 1954, p. 719, 1955, p. 88, 1968, p. B23; Whittington 1963, p. 28; Whittard 1966, p. 265; Dean 1966,
Its characteristics are well shown and summarized by Fortey (1980), and his interpretation of the genus and its referral to the Metagnostidae are largely followed here. The problems of generic discrimination between *Geragnostella*, *Geragnostus*, and *Arthrorhachis* are discussed below.

Kobayashi (1939, p. 171) proposed *Geragnostella* as a new subgenus of *Geragnostus* and designated *Agnostus tullbergi* Novák, 1883 as its type species. It was established to include species without a transverse furrow on the glabella and an effaced posterior lobe on the pygidium. Subsequently, Whittard (1955, p. 7) considered *Geragnostella* as a separate genus. Since then, arguments both for (Dean 1966, p. 273; Zhou and Dean 1986, p. 748) and against (Howell in Moore 1959; Pek 1977, pp. 12–13) suppression of *Geragnostella* have been presented.

Pek (1977) diagnosed *Geragnostella* and noted the morphological differences between *Geragnostus sidenbladhi* and *Geragnostella tullbergi*. According to him, *G. sidenbladhi* differs from *G. tullbergi* by having a transverse glabellar furrow, a wider border, and a shorter posterior lobe on the pygidium. It is clear that the length of the posterior lobe is a variable feature in many agnostids (cf. Fortey 1980, p. 26; Hunt 1967, pl. 22, figs. 27, 29), and in *Geragnostella* it closely approaches the range of variation seen in *Geragnostus*. In addition, a short transverse furrow or depression immediately in front of the glabellar node is present in *G. tullbergi* and it corresponds to the glabellar furrow in *G. sidenbladhi*. Apparently, the differences between the two genera can only effectively be applied to the type species, and I conclude that the supposedly definitive characteristics of *Geragnostella* intergrade among the large number of species now known which have been referred to *Geragnostus*. Thus, I concur with Dean (1966) and regard *Geragnostella* as a subjective junior synonym of *Geragnostus*.

Geragnostus bears a strong similarity to *Arthrorhachis* Hawle and Corda, 1847, and obviously they are closely related. The discrimination between the two genera is a persistent problem which has been tackled by several authors over the past 30 years, in particular by Ross (1967), Dean (1966), and Fortey (1980). Species with a long pygidial lobe and a median transglabellar furrow are generally referred to *Geragnostus*, whereas species with a short pygidial lobe and an effaced transglabellar furrow are referred to *Arthrorhachis*. As noted by Fortey (1980, p. 26), however, these characters are variable, even within some populations, and the characteristics of the two genera intergrade. Fortey (1980) gave an extensive review of the problems involved, and suggested that forms with the terminal lobe of the pygidial lobe exceeding the length of the postglabellar region (sg.) inside the border should be assigned to *Geragnostus*. In the type species, *G. sidenbladhi*, however, the terminal lobe of the pygidial lobe may be shorter than the postglabellar region inside the border. This is evident in a topotype pygidium (SGU Type 25), which, according to the label, is probably one of the two syntypes figured by Linnarson (1869, pl. 2, fig. 61; cf. Moberg and Segerberg 1906, pl. 4, fig. 1). Therefore, I conclude that the relative length of the pygidial lobe has been accorded undue generic significance, and *Geragnostus* may eventually prove to be a junior subjective synonym of *Arthrorhachis* (cf. Dean 1966; Zhou and Dean 1986, p. 748). For the time being, however, the much-used name *Geragnostus* is retained until the type species is thoroughly redescribed.

Geragnostus is a cosmopolitan genus with a great number of named species. As noted by several authors (e.g. Zhou and Dean 1986), many of these are exceedingly alike and distinguishable only on the basis of minor characters, which may be of questionable taxonomic value. Thus, a number of species that have been assigned to *Geragnostus* may prove to be synonymous. This uncertainty affects the validity of e.g. the Llanvirnian species *G. clausus* Whittington 1963, *G. symmetricus* Zhou (in Zhou et al. 1982), and *G. hadros* Wandás 1984, all of which may be conspecific with *G. longicollis* (Raymond 1925).

Geragnostus tullbergi (Novák 1883)
Plate 61, figs. 1–15; Plate 62, figs. 1–3

1883 Agnostus tullbergi Nov.; Novák, pp. 59–60, pl. 9, figs. 7–10.
1919 Agnostus cf. lentiformis Ang.; Funkquist, pl. 2, fig. 7.
1972 Geragnostus sp.; Gil Cid, pl. 1, fig. 5.
1973a Geragnostus semipolitus Dean, pp. 287-288, pl. 1, figs. 2, 4, 5, 7-12, 14, 16, 17.
1977 Geragnostella tullbergi (Novák); Pek, pp. 13-14, text-fig. 4, pl. 2, figs. 1-4, pl. 3, figs. 1, 2, 4, 6, 4, 4, pl. 8, figs. 5 and 6, pl. 9, fig. 4, pl. 10, figs. 1 and 2, [further synonymy].
1985 Geragnostella glicidae Rábano et al., p. 441, pl. 1, figs. 2, 6, 8, 9.

Neotype. An incomplete pygidium with two articulated thoracic tergites, figured and selected by Pek (1977, pl. 3, fig. 6). It is preserved in the type collections of the Municipal Museum of Rokycany, Czechoslovakia, as No. 1-356.

Type stratum. Šárka Formation, Llanvirn.

Type locality. Osek near Rokycany, Czechoslovakia.

Material. 27 complete or nearly complete cephalas, 5 fragmentary cephalas, 18 complete or nearly complete pygidia, and 6 fragmentary pygidia.

Diagnosis. A species of Geragnostus characterized by a wide pygidial border without postero-lateral spines, partial effacement of the posterior lobe of the pygidial rhachis, and an almost obliterated furrow in front of the median glabellar node. A secondary median node is present close to the posterior end of the pygidial rhachis.

Description. The cephalon is moderately to highly convex, subcircular, and subequal in length and width. The glabella, occupying 60-65% of the total cephalic length, is slightly tapered forward or nearly parallel-sided, moderately rounded anteriorly, and highly convex. It is generally slightly constricted opposite the median node. The median node is usually distinct and situated at about the midpoint of the glabella. In front of the node there is a faint depression. The glabellar rear is obtusely angulate. In front of the occipital band there is a narrow median ridge. Lateral glabellar furrows are absent. The basal lobes are entire, subtriangular, and wider than long.

The acrolobe is evenly rounded and unconstructed. The genae are smooth and equal in width anteriorly and laterally. They are separated from the glabella by weakly impressed dorsal furrows, and slope most steeply laterally; less steeply in front of the glabella. The border is moderately narrow, anteriorly being 6-10% of the total cephalic length (sag.), and slopes gently forward and laterally. It becomes narrower laterally and postero-laterally. The border furrow is weakly developed anteriorly and laterally. Postero-laterally, the border and border furrow nearly pass under the convexity (tr.) of the acrolobe. The posterior border is narrow, convex (exag.), and defined by a deep border furrow. It is flexed down beyond the fulcrum and then curved forward to become the lateral border. The genal angles (at the fulcrum) are pointed without spines. The cephalic recess is not visible.

The pygidium is moderately to highly convex, subcircular, and subequal in length and width or slightly wider than long. The pygidial rhachis (excluding the articulating half-ring), occupying 57-62% of the total pygidial length, is tapered backward, slightly constricted at the posterior furrow (F2), and divided into three lobes. The

EXPLANATION OF PLATE 61

All specimens whitened with ammonium chloride sublimate, and preserved with the exoskeleton unless otherwise indicated.
articulating half-ring is about one-third of the maximum width of the pygidium. The anterior and second rhachial lobes (M1 and M2) are generally distinct, subequal in length (exsag.), and crossed by a prominent median ridge, which is highest posteriorly. M1 is widest (tr.) and occupies 41–45% of the maximum width of the pygidium. The anterior furrow (F1) is present laterally, but absent medially across the median ridge. The posterior lobe (M3) is nearly effaced and only faintly outlined. It is slightly longer (sag.) than M1 and M2 combined, and separated from M2 by a transverse furrow (F2), which is curved slightly forward medially. The posterior end of M3 is acutely rounded and bears a low secondary median node just in front of the rear of the lobe.

The acrolobe is nearly semi-circular, evenly curved and unconstricted. The pleural fields are smooth, convex, and slope appreciably laterally and posteriorly. The posterior and postero-lateral border is wide, generally attaining 12–16% of the total pygidial length (sag.), and defined by a weak border furrow and an abrupt change in the slope of the exoskeleton. It becomes narrower antero-laterally and slopes laterally and posteriorly. Postero-lateral spines are absent. The anterior border furrow is deeply incised. The articulating facets are prominent and rise adaxially to the fulcrum. The antero-lateral corners of the pygidium are angulate.

The dimensions of the species are given in Tables 1 and 2.

Remarks. The description above is based upon adult specimens preserved with the exoskeleton. In exfoliated specimens, showing the parietal morphology, the furrows and lobes tend to be more distinct (Pl. 61, fig. 10). The posterior lobe of the pygidal rhachis is well defined on small specimens (Pl. 62, fig. 3). As size increases it becomes progressively less discernible until it is nearly effaced and only faintly outlined in pygidia longer than 2–5 mm.

The material from the Komstad Limestone Formation conforms in all essential features with Novák’s (1883) and Pek’s (1977) description of G. tullbergi from Bohemia. The Bohemian specimens, however, have a slightly longer posterior rhachial lobe on the pygidium, but this can be attributed to intraspecific morphological variability.

The relatively long (sag.) pygidal rhachis, the absence of postero-lateral spines on the pygidium, the poor development of a glabellar furrow in front of the median node, partial effacement of the posterior rhachial lobe on the pygidium, and the presence of a secondary median node on the pygidal rhachis are the most distinctive characteristics of G. tullbergi. In addition, the glabella seems to be more convex (tr. and sag.) than in most other species of Geragnostus.

Funkquist’s (1919, pl. 2, fig. 7) drawing of a cephalon which he ascribed to Agnostus cf. lentiformis Angelin 1851, from the Komstad Limestone Formation at Komstad, south-east Scania, strongly resembles G. tullbergi. Pygidia are required, however, for a confident determination.

G. semipolitus Dean 1973a, from strata probably corresponding to the upper Arenig in the Taurus Mountains of Turkey, is a subjective junior synonym of G. tullbergi, because it agrees in all essential characters with the diagnosis and description above.

Recently Rábano et al. (1985) described a closely comparable form, G. gilcidae Rábano, Pek and Vanek, 1985, from the Lower Llanvirn of Montes de Toledo and Villuerca, central Spain. According to Rábano et al. (1985), it differs from G. tullbergi mainly in having a narrower cephalic and pygidal border, and a narrower (sag.) postrhachial region. However, slight differences in the proportions of the individual parts of the exoskeleton cannot be considered as valid discriminatory characteristics. Thus, in view of the morphological variability of G. tullbergi, it is questionable whether the specimens recognized as G. gilcidae really represent a separate species.

G. explanatus Tjernvik 1956 from the lower Arenig (Megistaspis planilimbata Zone) of Närke, south-central Sweden, is closely comparable to G. tullbergi in having a partly effaced pygidal rhachis. It differs, however, in having a distinct transverse furrow on the glabella and a prominent, elongate glabellar node. In addition, the pygidium of G. explanatus is more elongate.

G. occitanus Howell 1935 from the lower and middle Arenig of Montagne Noire, France, corresponds fairly well with G. tullbergi. However, according to the detailed description given by Dean (1966) it differs in having a more quadrate cephalon, short genal spines, generally wider pygidal rhachis, and traces of pygidal marginal spines. Furthermore, the pygidal rhachis of G. occitanus apparently lacks a secondary median node.
AHLBERG: ORDOVICIAN AGNOSTID TRILOBITES

TABLE 1. Dimensions (in mm) of cephalia of *Geragnostus tullbergii*

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Lc</th>
<th>Lbc</th>
<th>Lac</th>
<th>G</th>
<th>N</th>
<th>Wc</th>
<th>Wg</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGU 1419</td>
<td>1.60</td>
<td>0.15</td>
<td>1.50</td>
<td>1.05</td>
<td>0.50</td>
<td>1.60</td>
<td>0.70</td>
</tr>
<tr>
<td>SGU 793</td>
<td>2.25</td>
<td>0.25</td>
<td>2.00</td>
<td>1.40</td>
<td>0.65</td>
<td>2.30</td>
<td>0.95</td>
</tr>
<tr>
<td>SGU 353</td>
<td>2.30</td>
<td>0.20</td>
<td>2.10</td>
<td>1.40</td>
<td>0.70</td>
<td>2.40</td>
<td>0.90</td>
</tr>
<tr>
<td>SGU 1417</td>
<td>2.60</td>
<td>0.20</td>
<td>2.40</td>
<td>1.60</td>
<td>0.80</td>
<td>2.65</td>
<td>1.10</td>
</tr>
<tr>
<td>SGU 296</td>
<td>2.80</td>
<td>0.25</td>
<td>2.50</td>
<td>1.75</td>
<td>0.85</td>
<td>2.95</td>
<td>1.10</td>
</tr>
<tr>
<td>SGU 1418</td>
<td>2.85</td>
<td>0.25</td>
<td>2.60</td>
<td>1.75</td>
<td>0.85</td>
<td>2.85</td>
<td>1.10</td>
</tr>
<tr>
<td>SGU 100</td>
<td>3.00</td>
<td>0.30</td>
<td>2.70</td>
<td>1.80</td>
<td>0.90</td>
<td>3.10</td>
<td>1.20</td>
</tr>
<tr>
<td>SGU 794</td>
<td>3.00</td>
<td>0.25</td>
<td>2.70</td>
<td>1.85</td>
<td>0.90</td>
<td>3.10</td>
<td>1.20</td>
</tr>
<tr>
<td>SGU 99</td>
<td>3.80</td>
<td>0.30</td>
<td>3.50</td>
<td>2.30</td>
<td>1.20</td>
<td>3.90</td>
<td>1.45</td>
</tr>
</tbody>
</table>

TABLE 2. Dimensions (in mm) of pygidia of *Geragnostus tullbergii*

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Lp₁</th>
<th>Lp₂</th>
<th>Lr</th>
<th>Lbp</th>
<th>Wp</th>
<th>Wr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGU 3909</td>
<td>1.75</td>
<td>1.60</td>
<td>1.00</td>
<td>0.30</td>
<td>1.70</td>
<td>0.75</td>
</tr>
<tr>
<td>SGU 3315</td>
<td>—</td>
<td>2.70</td>
<td>1.70</td>
<td>0.40</td>
<td>3.10</td>
<td>1.40</td>
</tr>
<tr>
<td>SGU 3311</td>
<td>3.30</td>
<td>3.05</td>
<td>2.00</td>
<td>0.50</td>
<td>3.30</td>
<td>1.60</td>
</tr>
<tr>
<td>SGU 3313</td>
<td>3.40</td>
<td>3.10</td>
<td>—</td>
<td>0.50</td>
<td>3.60</td>
<td>1.60</td>
</tr>
<tr>
<td>SGU 3312</td>
<td>3.60</td>
<td>3.35</td>
<td>—</td>
<td>0.45</td>
<td>3.70</td>
<td>1.60</td>
</tr>
<tr>
<td>SGU 3314</td>
<td>3.60</td>
<td>3.35</td>
<td>2.20</td>
<td>0.50</td>
<td>3.90</td>
<td>1.65</td>
</tr>
<tr>
<td>SGU 3910</td>
<td>4.30</td>
<td>3.95</td>
<td>—</td>
<td>0.50</td>
<td>—</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Occurrence. Arenig(?)-Llanvirn. Czechoslovakia, Sárka Formation; Taurus Mountains of Turkey, Sobova Formation; Scania, southern Sweden, Komstad Limestone Formation (J.G.A. coll. boulders 1, 3, and 5; *Asaphus expansus* Zone or basal A. ‘raniceps’ Zone of the lower Kunda Stage); central Spain(?), ‘Shales with *Neosaurus*’. In Czechoslovakia, the species appears to range into the Dobrotivá Formation of Llandeilo age (Pek 1977, p. 14).

Geragnostus cf. ingricus (Schmidt 1894)

Plate 62, figs. 4–16

cf. 1894 *Agnostus glabratus* Ang. var. *ingricus*; Schmidt, pp. 90–92, pl. 6, figs. 39–44.

Material. 24 cephalia and 14 pygidia. In addition there are two small enrolled specimens and three thoracic tergites, tentatively assigned to this form.

Description. The cephalon is about as wide as long and subquadrate to subcircular in outline. The glabella, occupying 60–66% of the sagittal cephalic length, is well defined by dorsal furrows, gently tapered forward, and moderately rounded in front. It is slightly constricted at about mid-length. The low median node is situated slightly anterior to the midpoint of the glabella. Four pairs of muscle insertion areas are generally apparent on the glabella. Counting from the front, the first and second sets flank the median glabellar node. The first set is comparatively long (tr.) and directed antero-laterally from the median node end. The second set is nearly transverse. The third set is the longest (tr.) and directed postero-laterally. The fourth set consists of elliptical impressions with the long axes directed postero-laterally. The glabellar rear is obtusely angulate. In front of the occipital band there is a narrow median ridge, extending forward up the slope from the occipital furrow. The basal lobes are entire, subtriangular, wider than long, connected medially, and provided with transverse muscle impressions postero-medially.

The acrolobe is evenly rounded or slightly constricted antero-laterally. The genae are moderately convex, smooth, and equal in width anteriorly and laterally. They gently decline anteriorly, more steeply so laterally. The border is gently declined, and it is widest antero-laterally, expanding in width from the posterior border.
and slightly narrowing adaxially again towards the mid-line. Sagittally it occupies 9–13% of the total cephalic length. The posterior border is narrow, convex (exssag.), and defined by a deep border furrow. It is steeply declined beyond the fulcrum and then curved forward to become the lateral border. The genal angles (at the fulcrum) are pointed without spines.

The thorax is of typical *Geragnostus/Arthrorhachis* type (e.g. Jaekel 1909; Whittington 1963, fig. 3, 1965, pl. 1, figs. 4 and 6).

The pygidium is subcircular to subquadrate, highly convex, and about as wide as long. The pygidial rhachis (excluding the articulating half-ring) is divided into three well-defined lobes and occupies 45–57% of the total pygidial length. It is generally slightly constricted at the posterior furrow (F2), tapers gently backwards, and is broadly rounded posteriorly. The anterior rhachial lobe (M1) is slightly shorter (exssag.) than M2, and both are crossed by a prominent median ridge which is highest posteriorly. They are separated from each other by a furrow (F1) which is directed inward and slightly forward from the dorsal furrow. The posterior lobe (M3) is about as long (sag.) as M1 and M2 combined, and separated from M2 by a transverse furrow which is curved slightly forward medially. In some specimens there is a minute median node on the posterior tip of the rhachis. The pleural fields are smooth, of almost constant width, and steeply downsloping. The posterior and lateral border is like that of the cephalon and generally widest postero-laterally where there is a pair of spines commencing on a transverse line well behind the rhachis. Sagittally the posterior border occupies 10–15% of the total pygidial length. The anterior border furrow is deeply incised. The articulating facets are prominent and steeply downward-sloping. The antero-lateral corners of the pygidium are obtusely angulate.

The dimensions of this form are given in Tables 3 and 4.

Remarks. In the general outline and proportions of the individual parts of the exoskeleton, the specimens from the Komstad Limestone most closely resemble those of *G. ingr Bancu* (Schmidt 1894) from the Volkov or Kunda Stage of the Leningrad district (Ingermanland), East Baltic area. The specimens figured by Schmidt (1894, pl. 6, figs. 39–44) seem to lack distinct muscle insertion areas, however, but this may be due to taphonomic processes. In addition, a median glabellar node on the material from the Leningrad district was not indicated by Schmidt (1894), and the identification must be tentative. It must also be emphasized that the type material of *G. ingr Bancu* needs to be revised.

The Scanian material also shares many features with *G. chius* Whittington 1963, from the Llanvirn of Lower Head, western Newfoundland, and other closely allied forms from Llanvirn units elsewhere in North America, Europe, and China. There are, however, minor differences in the morphological details, and the Scanian form can be differentiated *i.a.* by having a consistently shorter (sag.) pygidial rhachis and a slightly shorter (sag.) glabella.

G. cf. longicolis of Dean (1937b), from the Keel Range, northwestern Yukon Territory, Canada, is broadly similar to *G. cf. ingr Bancu*, but differs in having lateral genal areas, a slightly wider glabella, and a more convex posterior lobe of the pygidial rhachis.

EXPLANATION OF PLATE 62

All specimens whitened with ammonium chloride sublimate, and preserved with the exoskeleton unless otherwise indicated.
AHLBERG, *Geragnostus*
Table 3. Dimensions (in mm) of cephalon of Geragnostus cf. ingrificus.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Lc</th>
<th>Lbc</th>
<th>Lac</th>
<th>G</th>
<th>N</th>
<th>Wc</th>
<th>Wg</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGU 4661</td>
<td>2.40</td>
<td>0.25</td>
<td>2.15</td>
<td>1.50</td>
<td>0.80</td>
<td>2.30</td>
<td>1.15</td>
</tr>
<tr>
<td>SGU 4643</td>
<td>2.75</td>
<td>0.35</td>
<td>2.40</td>
<td>1.70</td>
<td>1.00</td>
<td>2.80</td>
<td>1.20</td>
</tr>
<tr>
<td>SGU 4660</td>
<td>2.60</td>
<td>0.30</td>
<td>2.50</td>
<td>1.85</td>
<td>1.10</td>
<td>2.90</td>
<td>1.30</td>
</tr>
<tr>
<td>SGU 4659</td>
<td>3.20</td>
<td>0.30</td>
<td>2.90</td>
<td>2.10</td>
<td>1.30</td>
<td>3.20</td>
<td>1.40</td>
</tr>
<tr>
<td>SGU 4620</td>
<td>4.70</td>
<td>0.60</td>
<td>4.10</td>
<td>3.05</td>
<td>1.85</td>
<td>5.00</td>
<td>2.00</td>
</tr>
<tr>
<td>SGU 4160</td>
<td>5.10</td>
<td>0.50</td>
<td>4.60</td>
<td>3.30</td>
<td>1.70</td>
<td>5.20</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Table 4. Dimensions (in mm) of pygidia of Geragnostus cf. ingrificus.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Lp1</th>
<th>Lp2</th>
<th>Lr</th>
<th>Lbp</th>
<th>Wp</th>
<th>Wr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGU 5125</td>
<td>2.25</td>
<td>2.05</td>
<td>1.30</td>
<td>0.30</td>
<td>2.50</td>
<td>1.10</td>
</tr>
<tr>
<td>SGU 4756</td>
<td>2.40</td>
<td>2.20</td>
<td>1.30</td>
<td>0.35</td>
<td>2.50</td>
<td>1.05</td>
</tr>
<tr>
<td>SGU 4662</td>
<td>2.60</td>
<td>2.40</td>
<td>1.40</td>
<td>0.40</td>
<td>2.60</td>
<td>1.10</td>
</tr>
<tr>
<td>SGU 4869</td>
<td>3.20</td>
<td>3.00</td>
<td>1.50</td>
<td>0.50</td>
<td>3.20</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Arthrorhachis erratica (Jaekel 1909) from glacial erratics originating from the ‘Asaphus-kalk’ of Scandinavia, differs from the Scanian specimens in having a slightly wider (tr.) and less tapered pygidal rhachis, and a shorter (sag.) terminal lobe on the pygidal rhachis. The cephalon from Scania are generally subquadrate in outline with the maximum width at the antero-lateral corners, and they are similar to the holotype cephalon of A. erratica, which was refi gured by Neben and Krüger (1971, pl. 11, fi g. 34). The holotype cephalon, however, lacks distinct muscle insertion areas on the glabella, but as noted above this may be due to the state of preservation.

The arrangement and outline of the glabellar muscle impression areas are very similar to that of A. elspethi Raymond 1925 from the Middle Ordovician of North America (see Cooper 1953; Hunt 1967).

There is considerable morphological variation exhibited by the Scanian material, particularly with regard to the length and outline of the terminal lobe of the pygidal rhachis, and the general outline of the cephalon and pygidium. It is possible that more than one species is involved. I consider, however, these differences to represent minor intraspecific variation rather than specific differences.

Occurrence. Scania, southern Sweden (Komstad Limestone Formation; J.G.A. coll. in situ and boulders 1–3, 5–7). Asaphus expansus Zone or basal A. ‘raniceps’ Zone of the lower Kunda Stage.

Genus ARTHORHACHIS Hawle and Corda, 1847

Type species. Battus tardus Barrande, 1846, from the Králov Dvůr Formation (Ashgill) of Libomyšl, near Zdice, Czechoslovakia.

Remarks. I follow Fortey (1980) in restricting the genus Trinodus to the holotype of the type species, T. agnostiformis M'Coy 1846. The problems surrounding the discrimination between Arthrorhachis and Geragnostus are discussed above under Geragnostus.
Arthrorhachis lentiformis (Angelin 1851)?

Text-fig. 3

71851 Agnostus lentiformis Angelin, p. 7, pl. 6, fig. 6.
71878 Agnostus lentiformis Angelin, p. 7, pl. 6, fig. 6.

Material. Three pygidia.

Dimensions (mm)

<table>
<thead>
<tr>
<th>SGU 5129</th>
<th>Lp₁</th>
<th>Lp₂</th>
<th>Lr</th>
<th>Lbp</th>
<th>Wp</th>
<th>Wr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.60</td>
<td>2.40</td>
<td>1.30</td>
<td>0.30</td>
<td>—</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Remarks. Arthrorhachis lentiformis (Angelin 1851) is based on material from the Komstad Limestone in the classical Fägelsång area east of Lund, Scania. The specimen(s) figured by Angelin (1851, pl. 6, fig. 6) cannot be located, and are considered lost (cf. Wiman 1905, p. 13). No other possible syntypes can be traced. The selection of a neotype has to await a revision of the agnostids from the Komstad Limestone Formation in the Fägelsång area. Unfortunately, Angelin's description is short and his figure is vague. Thus, it is difficult to recognize diagnostic features. His figure, however, clearly shows a specimen with a short, tapered pygidial rhachis, occupying about half of the pygidial length. The terminal lobe of the pygidial rhachis appears to be very short, and spines are absent on the pygidial border. His figured cephalon is of typical Geragnostus/Arthrorhachis type with a fairly long glabella.

The three pygidia at hand have a short rhachis, occupying about 50% of the total pygidial length. In one of the pygidia the border lacks marginal spines and the rhachis tapers backward strongly (text-fig. 3A). The other two pygidia have a gently tapered rhachis and a minute pair of spines are present on the border (text-fig. 3B–C). In addition, they are more convex and the dorsal furrows are more prominent than in the specimen lacking spines. Thus, two species may be involved. For the moment, however, the three pygidia are questionably assigned to A. lentiformis.

A. danica (Poulson 1965) from the lower part of the Komstad Limestone Formation at Skelbro, Bornholm, Denmark, corresponds fairly well with Angelin's (1851) figure of A. lentiformis and may prove eventually to be a junior subjective synonym of A. lentiformis. A similar uncertainty affects the validity of A. hebetatus (Dean 1973a) from the Sobova Formation of the Taurus Mountains, Turkey.

Occurrence. Scania, southern Sweden (Komstad Limestone Formation; J.G.A. coll. in situ and boulder 2). Asaphus expansus Zone or basal A. 'ramiceps' Zone of the lower Kunda Stage.
Genus oculagnostus Ahlberg, 1988

Type species. *Agnostus frici* Holub 1908a (pp. 9–11, pl. 1, fig. 1a–b) from the Llanvirnian Sárka Formation at Osek near Rokycany, Czechoslovakia; by original designation.

Diagnosis. See Ahlberg (1988).

Remarks. This monotypic genus was recently erected by Ahlberg (1988) to include a rare species, *Agnostus frici* Holub 1908a, from the Llanvirn of Bohemia and the Arenig-Llanvirn transition beds of Scania, southern Sweden. It is unique amongst agnostid trilobites in possessing ocular structures, located at the postero-lateral part of the genae (Ahlberg 1988). In addition, the morphology of the glabella and the course of the glabellar furrows easily distinguish the genus from most other agnostid genera. In the glabellar configuration it most closely resembles species of the scrobiculate genus *Corrugatagnostus*, especially *C. fortis* (Novák 1883).

The systematic affinities of *Oculagnostus* are obscure. For the moment, however, it is questionably placed within the family Metagnostidae as defined by Fortey (1980).

Oculagnostus frici (Holub 1908a)

Text-fig. 4

*1908a Agnostus Fričii; Holub, pp. 9–11, pl. 1, fig. 1a–b.
. 1908b Agnostus Fritschi; Holub, pp. 2–3, pl. 1, fig. 1a–b.
. 1977 Segmentagnostus frici (Holub); Pek, pp. 19–20, pl. 1, fig. 6, pl. 2, figs. 5–8.
. 1988 Oculagnostus frici (Holub); Ahlberg, pp. 116–118, figs. 1–3.

Neotype. An incomplete cephalon, figured and selected by Pek (1977, pl. 1, fig. 6). It is preserved in the type collections of the Municipal Museum of Rokycany, Czechoslovakia, as No. 1–361.

Type stratum. Sárka Formation, Llanvirn.

Type locality. Osek near Rokycany, Czechoslovakia.

Material. Three nearly complete cephalas and two incomplete pygidia.

Diagnosis. As for the genus (see Ahlberg 1988).

Description. The cephalon is moderately convex and subquadrate in outline. The maximum width, being on a transverse line passing the preglabellar furrow, is 98–99% of the sagittal length. The glabella, occupying 65–70% of the total cephalic length, is nearly parallel-sided, 1.6–1.8 times longer than wide, truncate in front, and set off from the genae by well-developed dorsal furrows. The glabellar rear is obtusely angulate. Transversely, the glabella is highly convex; sagittally it is moderately convex. Two distinct transglabellar furrows divide the glabella into three lobes of which the middle is the shortest (sag. and es sag.). The anterior lobe (M3) is subrectangular, attaining 30–40% of the glabellar length (sag.), and separated behind by the anterior glabellar furrow (F2), which is directed inward and slightly forward from the dorsal furrows, then curved slightly backward adaxially. The posterior glabellar furrow (F1) is curved inward and forward from the dorsal furrows, making a forward-pointing V in front of the median node, which is situated slightly in front of the mid-length of the glabella. The basal lobes are large, entire, subtriangular, and separated from the glabella by a basal furrow which becomes weaker postero-medially.

The acrolobe is evenly rounded anteriorly, but laterally slightly constricted. The genae are smooth, convex, of almost constant width, and slope most steeply laterally; less steeply in front of the glabella. At the postero-lateral margin of the genae there are ocular structures (including palpebral lobes; Ahlberg 1988). The border is narrow postero-laterally, widening forward to a maximum width at the antero-lateral corners of the cephalon. The lateral border is downward-sloping distally and provided with a shallow furrow, extending from the ocular structure some distance forward parallel with the lateral margin. Anteriorly the border is convex (sag.) and moderately wide. Combined with the border furrow it occupies 6–9% of the total cephalic
length. The posterior border is convex (exsag.), defined by a deeply incised border furrow, and curved around the genital angle to meet the lateral border. There is no postero-lateral spine at this point.

The pygidium is moderately convex and subcircular in outline. The maximum width, being on a transverse line passing immediately in front of the postero-lateral spines, is slightly greater than the total pygidial length. The pygidial rhachis occupies about 60% of the total pygidial length and about 40% of the maximum width of the pygidium. It is subrectangular, constricted at the middle lobe (M2), defined by well impressed dorsal furrows, and truncate behind with a median node on the posterior tip. The dorsal furrow is slightly deepened behind this node. The rhachis is divided into three lobes by two nearly transverse furrows, and crossed by a median ridge which is only faintly outlined on the posterior lobe (M3). M1 and M2 are subequal in length (exsag.). M3 is slightly less than half the length of the rhachis (excluding the articulating half-ring).

The acrolobe is laterally constricted. The pleural fields are smooth, of almost constant width, convex, and slope appreciably laterally and posteriorly; most steeply laterally. The border is convex and downward-sloping laterally. It is extremely wide posterolaterally, narrowing considerably forward and medially. Short posterolateral spines commence on a transverse line across the rear of the pygidial acrolobe. The anterior border is convex (exsag.) adaxially, faceted anterolaterally, and separated from the pleural field by a deep border furrow.

Dimensions (mm)

<table>
<thead>
<tr>
<th></th>
<th>Lc</th>
<th>Lbc</th>
<th>Lac</th>
<th>G</th>
<th>N</th>
<th>Wc</th>
<th>Wg</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGU 5466</td>
<td>3.40</td>
<td>0.50</td>
<td>3.10</td>
<td>2.35</td>
<td>1.30</td>
<td>3.00</td>
<td>1.30</td>
</tr>
<tr>
<td>SGU 5467</td>
<td>2.90</td>
<td>0.20</td>
<td>2.70</td>
<td>2.05</td>
<td>1.20</td>
<td>2.60</td>
<td>1.20</td>
</tr>
<tr>
<td>SGU 5130</td>
<td>2.15</td>
<td>0.20</td>
<td>1.95</td>
<td>1.40</td>
<td>0.90</td>
<td>1.90</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Remarks. The specimens from the Komstad Limestone Formation are specifically indistinguishable from Holub's (1908a, b) and Pek's (1977) descriptions and illustrations of *Oculagnostus frieli* from Bohemia. Although the description of Pek (1977) is adequate, a new description is presented above because additional information is now available. The ocular structures of *O. frieli* were recently described by Ahlberg (1988).

Occurrence. Arenig(?)-Llanvirn. Czechoslovakia, Šárka Formation; Scania, southern Sweden, Komstad Limestone Formation (J. G. A. coll. *in situ* and boulder 1; *Asaphus expansus* Zone or basal A. *raniceps* Zone of the lower Kunda Stage).

Acknowledgements. Dr Jan Bergström, Lund, Dr Euan N. K. Clarkson, Edinburgh, Professor Valdar Janusson, Stockholm, and Dr Anita Lögren, Lund, read the manuscript draft and provided helpful suggestions. I also gratefully acknowledge technical assistance from Christia Andreasson, Rezső Laszlo, and Tomas Nilsson (all Lund). Financial support has been received from the Swedish Natural Science Research Council (NFR).

———. 1966. Ibid. 8, 265–306.

———. 1965. Trilobites of the Ordovician Table Head Formation, western Newfoundland. Ibid. 132, 275–441.

PER AHLBERG
Department of Historical Geology
and Palaeontology
Sölvegatan 13
S–223 62 Lund
Sweden

Typescript received 27 April 1988
Revised typescript received 9 November 1988