SECONDARY NANOZOOECIA IN SOME UPPER PALAEozoIC FENESTRATE BRYOZOA

by ADRIAN J. BANCROFT

ABSTRACT. Autozoocellar apertures sealed by perforate terminal diaphragms have been found in eleven species of British and Irish Carboniferous and Permian fenestrate Bryozoa. In their skeletal morphology, intra-colonial abundance, and distribution they resemble the perforate terminal diaphragms of polymorphs that are termed secondary nanozoecia and in the Recent tubuloporinid cyclostome Plagiocelia and the lichenoporid cyclostome Disporaella. The former presence in fenestrate of single-lenticled non-feeding polymorphs comparable to those of Plagiocelia and Disporaella is inferred. As in Plagiocelia and Disporaella, secondary nanozoecia of fenestrate bryozoans may represent a late stage of zoidal ontogeny. The function of secondary nanozoecia in Plagiocelia and Disporaella is unknown, but those of fenestrate possibly had a defensive/cleaning function comparable to that suggested for primary nanozoecia in the Recent tubuloporinid cyclostome Diplazomena oboletum.

FENESTRATE Bryoza (Class Stenolaemata Berg, 1926; Order Fenestrate Elias and Condra, 1957) were once considered to be monomorphic. However, recent morphological studies have revealed the existence of a variety of skeletal structures which have been interpreted as reflecting the occurrence of several types of polymorphic zooids. Certain types of polymorphic zoocelia are reasonably well documented in fenestrate, e.g. brood chambers (Tavener-Smith 1964; Engel 1975; Stratton 1975, 1981; Southwood 1985) and accessory pores (Nikiforova 1958; Shalga-Nesterenko 1941, 1952; Shishlova 1970), but inferred secondary nanozoecia have hitherto been described in only one taxon, Lyroporella quintumialis (Hall), from the Carboniferous of the USA (McKinney 1977). During a recent revision of British and Irish Carboniferous Bryoza, skeletal structures that resemble the perforate terminal diaphragms of secondary nanozoecia in certain Recent Bryoza (the tubuloporinid cyclostome Plagiocelia, the lichenoporid cyclostome Disporaella, and L. quintumialis) have been found to occur in eight species of fenestrate Bryoza. Identical structures have also been recently found in three species of Upper Permian fenestrate Bryoza from the Middle Magnesian Limestone (reef facies) of County Durham, England (D. A. Southwood, pers. comm.). The abundance of the material available and the occurrence of these structures in a number of taxa has allowed a detailed analysis of their morphology and interpretation of their functional significance. Cited material is located in the collections of the British Museum (Natural History).

RECENT SECONDARY NANOZOOECIA

Primary nanozoecia were first described in detail by Borg (1926) in the living cyclostome Diplazomena Borg and are morphologically and functionally reasonably well known. Secondary nanozoecia, however, have only recently been documented by Silen and Harmelin (1974) in the living tubuloporinid cyclostome Plagiocelia and by Moyano (1982) in the living lichenoporid cyclostome Disporaella. Although the soft part morphology of primary and secondary nanozoecia is comparable, primary nanozoecia are budded from the outset as polymorphic zooids whereas secondary nanozoecia are intra-zoidal, that is ontogenetic polymorphs developed within the chamber of a degenerated autozooid.

Colonies of Plagiocelia and Disporaella are adnate and secondary nanozoecia are developed in older parts of the colonies. They represent a late stage of ontogenetic development. According to Silen and Harmelin (1974, p. 93) the development of a secondary nanozooid takes the following path.
Following the degeneration of the autozoocoeal polypide only the atrial sphincter and the proximal part of the zooid remain unchanged. A perforate terminal diaphragm, with a single small circular secondary aperture, is calcified centripetally over the original autozoocoeal aperture. The secondary aperture is slightly elevated above the level of the terminal diaphragm by a peristome-like rim (Silen and Harmelin 1974, figs. 16 and 17). A new polypide with a different morphology is then regenerated. All parts are smaller, the alimentary canal is rudimentary, and there is a single non-ciliated tentacle. When protruded the tentacle is very short and extends vertically from the secondary aperture (Silen and Harmelin 1974, figs. 16–20).

Although these authors made observations on the behaviour and morphology of secondary nanozoecoids in *Plagiocoea*, they did not reach any conclusions as to their functional significance. They did however exclude a feeding function, because of the lack of cilia on the tentacle, and a cleaning function analogous to that of primary nanozoecoids in *Diploocoea obelium* (Johnson) because the tentacle is too short and inappropriately orientated. They also found no evidence of any male cells, glands, or other special organs.

FENESTRATE SECONDARY NANZOOCOECIA

In fossil Bryozoa, calcified perforate terminal diaphragms with elevated secondary apertures sealing autozoocoeal apertures have only been recognized and interpreted as representing the terminal diaphragms of secondary nanozoecia in the Carboniferous fenestrate *L. quinuncialis* (Hall) (McKinney 1977). However, several authors have illustrated and described similar structures comparable with the perforate terminal diaphragms of secondary nanozoecia in *Plagiocoea* and *Diploocoea* in other Carboniferous fenestrate taxa. Young (1879, p. 212) described the occurrence of cell pores covered by a thin calcareous disc or diaphragm pierced in the centre by a very minute pore in *Fenestella plebeia* McCoy, *F. ejacula* McCoy, *Polyphora tuberculata* Prout, and *Penniretepora elegans* (Young and Young). He believed that this structure was a condition of the perfectly preserved cell pore in these taxa. Zittel (1895), in diagnosing the family *Fenestellidae* King, described the structure of zoocoeal apertures when perfectly preserved as being covered by centrally perforate closures. Tavener-Smith (1969, pl. 54, figs. 4 and 5; text-fig. 9) illustrated the peristomial funnels of secondary nanozoecia in longitudinal section, in the Carboniferous fenestrates *Lyropora quinuncialis* Hall and *L. subquadrantris* (Hall). Most recently Tavener-Smith (1973, p. 459) described autozoocoeal apertures in some specimens of *P. polyphora* (Phillips) as being sealed by a translucent plate-like deposit, sometimes incomplete and pierced by a small central orifice.

During a recent revision of British and Irish Carboniferous fenestrate Bryozoa (Barcroft 1984) identical structures have been found to occur in another four taxa in addition to those mentioned by Young and Tavener-Smith. These are *Penniretepora fassicaninaea* (Young and Young), *P. pulcherrima* (McCoy), *P. phalana* McCoy, and *Polyphora dendroidea* McCoy. They have also been found to occur in three Upper Permian fenestrate taxa from the Middle Magnesian Limestone (reef facies) of County Durham, England: *Penniretepora waltheri* (Korn), *Synoecidia virgulacea* (Phillips), and *P. retiformis* (Selothelin) (D. A. Southwood, pers. comm.).

The morphology of perforate terminal diaphragms in all these taxa is comparable and there is only slight morphological variation within a species (text-fig. 1). All consist of a thin lamina sealing the autozoocoeal aperture, at a level immediately below the crest of the peristomial rim, or the branch surface in taxa without peristomes, and are perforated by a very small approximately centrally positioned secondary aperture. Secondary apertures range between 0.010 mm and 0.021 mm in diameter, and while in *P. pulcherrima* the perimeter of the secondary apertures form low, well-rounded, thick peristomes (text-fig. 1c, r), in all other taxa secondary apertures are elevated above the level of the peristomes by distally narrowing funnel-shaped peristomes (text-fig. 1b). The surface of diaphragms is usually flat and smooth, except in *P. pulcherrima* in which the perimeter of the diaphragm is ornamented by a single row of closely spaced small circular pustules (text-fig. 1f).

Tavener-Smith (1973, p. 459) noted the occurrence of these structures in the proximal parts of colonies of *F. polyphora*. However, while terminal diaphragms appear to be particularly abundant in

The extreme proximal parts of fenestrate colonies, in several large colony fragments of S. virgulaecea they extend further distally; colonies may possess perforate terminal diaphragms sealing autozoococial apertures up to more than 10 cm from the colony origin.

Functional interpretation
The occurrence of perforate terminal diaphragms in several Upper Palaeozoic fenestrate taxa, comparable in morphology to the perforate terminal diaphragms of living secondary nanozoocoeia in Plagioecia and Disporea, suggests the existence of a polymorphic zooid analogous to the single
tented secondary nanozoecoids of Plagiocysta and Dispora (McKinney 1977). McKinney suggested that such a single-tentacled polypide in fenestrate may have functioned as a male polymorph as inferred for some Recent chelostome zooids with a reduced number of tentacles (after Cook 1968). However, this function is possibly limited to mobile funneliform chelostomes, where long single-tentacled male zooids almost appear to copulate with maternal zooids. The intra-colonial abundance and distribution of perforate terminal diaphragms, and the small size of secondary apertures in fenestrates, possibly does not favour such a role.

As in Plagiocysta and Dispora, fenestrate secondary nanozoecoids were possibly a late stage of zooidal ontogenetic development (Tavener-Smith 1973, p. 459; McKinney 1977, p. 96). Those observed by McKinney were completely covered over by laminated skeletal deposits in the proximal heavily thickened margin of Lyroporella soon after their development. However, although proximal areas of fenestrate colonies are susceptible to additional deposition of laminated skeletal material, which served to strengthen the basal areas of large reticulate or pinnate colonies, only a few terminal diaphragms in the extreme proximal parts of colonies examined in the present study were seen to be completely covered by laminated skeletal deposits.

McKinney suggested that the single-tentacled polypides of fenestrate secondary nanozoecoids may have performed some kind of defensive/cleaning function shown by Silén and Harmelin (1974) for

primary nanozooids of *Diplosalen obelium*. In *D. obelium* colonies the single tentacle protruded from the aperture of the nanozoecium is long. It extends in a horizontal plane and performs a periodic proximal to distal motion or sweeping circular motion (text-fig. 2 A-C). Silén and Hamelin showed that these movements facilitated the clearance of mud particles from the colony surface.

It is quite possible that fenestrate secondary nanozooids had a function comparable to that of primary nanozooids in *D. obelium*, and that they facilitated the removal of sediment particles and prevented the settlement and attachment of larvae of other organisms on the obverse surface of branches. Primary nanozoecia are equidistant in colonies of *D. obelium*, and Silén and Hamelin (1974, fig. 15) showed that the movement of nanozooid tentacles was such that almost the entire surface area of the colony would be situated within reach of them. In fenestrates, autozoecial apertures only open on one side of the meshwork, the obverse or frontal surface, are equidistant and alternately arranged in longitudinal rows on branches. As in *D. obelium* it is possible to envisage that almost the entire obverse surface of branches in the proximal portion of a fenestrate colony would be situated within reach of secondary nanozooid tentacles (text-fig. 2b). The inferred defensive/cleaning function of fenestrate secondary nanozooids may not have been necessary in other parts of the colony where active autozooids created powerful feeding currents that scourd obverse branch surfaces. It is also possible that fenestrate autozooids may have utilized particle rejection mechanisms similar to those of many living gymnolaemates to facilitate the removal of unwanted particles. The action of secondary nanozooids and autozooids possibly explains the reason why the reverse surface of branches are more commonly found encrusted by parasitic organisms, such as serpulids and adnate Bryozoa, than the obverse surface.

The distribution of perforate terminal diaphragms in fenestrate colonies suggests that the morphologic change from autozooid to nanozooid was probably age related as in *Plagiocystia* and *Dis porella*. In mature colonies of *Plagiocystia* and *Dis porella* the largest portion of the colony surface is comprised of secondary nanozoecia (Silén and Hamelin 1974; Moyano 1982). Unfortunately, the growth rate of fenestrate bryozoans is undetermined, and it is not possible to tell the relative age of colony fragments solely on the relative abundance of secondary nanozoecia.

CONCLUSIONS

1. Perforate terminal diaphragms sealing autozoecial chambers in fenestrates are comparable in morphology, distribution, and relative abundance to identical structures sealing autozoecial chambers and occupied by non-feeding polymorphs (secondary nanozooids) in the Recent tubuloporinid cyclostome *Plagiocystia* and the lichenoporid cyclostome *Dis porella*.

2. In fenestrates, autozoecial chambers sealed by such structures may also have been occupied by single-tenantced non-feeding polypides comparable to secondary nanozooids in *Plagiocystia* and *Dis porella*.

3. As in *Plagiocystia* and *Dis porella*, fenestrate secondary nanozoecia may represent a late stage of zooidal ontogenetic development.

4. Fenestrate secondary nanozooids possibly had a defensive/cleaning function comparable to primary nanozooids in the Recent tubuloporinid cyclostome *Diplosalen obelium*.

Acknowledgements. I thank Dr G. P. Larwood, Department of Geological Sciences, University of Durham, for critically reviewing an early draft of this manuscript, and Dr P. D. Taylor, British Museum (Natural History), for advice given during preparation of a revised draft. I am grateful to Mr D. A. Southwood, Department of Geological Sciences, University of Durham, for kindly allowing me make reference to his Permian material. This work was carried out during the tenure of a Natural Environment Research Council studentship at the Department of Geological Sciences, University of Durham.

REFERENCES

A. J. BANCOFF
Department of Geology
Trinity College
Dublin 2
Ireland

Typecript received 22 April 1985
Revised typescript received 10 June 1985