A NEW RICCIISPORITES FROM THE TRIASSIC OF ARCTIC CANADA

by CHARLES J. FELIX and PATRICIA P. BURBRIDGE

ABSTRACT. A new plant spore, Ricciisporites umbonatus sp. nov., is described. Its occurrence in surface and subsurface is reported. The species appears to occur in Norian and Karmian age rocks.

PALYNOLOGICAL study of Triassic sediments in the Canadian Arctic Islands has resulted in the designation of a new taxon, Ricciisporites umbonatus, which is best assignable to the genus Ricciisporites Lundblad (1954), 1959. The spore appears to be stratigraphically limited, but it has been observed on numerous occasions from both the surface and subsurface, and is frequently numerous in its representation. We have also recorded it from both marine and non-marine associations.

Triassic rocks are widely distributed in the islands of Arctic Canada, but it has only been in the past two decades that salient features of Triassic stratigraphy have been established. In the Sverdrup Basin, exposures of Triassic rocks occur on Ellesmere, Axel Heiberg, Cornwall, Melville, Prince Patrick, Brock, and Borden Islands, as well as on many smaller islands. The extensive Triassic sediments in the Sverdrup Basin have proved to be of interest as reservoirs for hydrocarbons and have increased in commercial potential. The sediments consist of interbedded marine shales and siltstones and non-marine sandstones, and several distinct facies occur. Detailed correlation of the various sandstones is difficult, and palynological techniques are one of the most promising tools for correlation. Relatively little attention has been devoted to Triassic palynology in the Arctic Islands, and the studies of McGregor (1965), Felix (1975), Fisher and Bujak (1975), and Bujak and Fisher (1976) are the most significant palynology contributions.

The assignment of the new spore to Ricciisporites is admittedly speculative. In part identification is based upon a morphological similarity to R. tuberculatus Lundblad (1954), 1959, with which it is invariably associated, often in large numbers. In general, the diagnosis is general and brief. The spores have a distal sulcus, and the exine surface has a variety of processes. The major difference from the generic diagnosis is that of tetrad occurrence, since Lundblad (1959) noted that the spores were permanently united into tetrads, and R. tuberculatus, the genotype, seems to always occur in a tetrad configuration. R. umbonatus usually occurs in single grains, but tetrads were observed. About 10% of the recorded occurrences were tetrads. The presence of both single grains and tetrads in the same family, or even genus, is not unique in fossil or extant plants. The failure to have consistent tetrads in R. umbonatus should not deter its assignment to Ricciisporites.

The arborescent lycopsids have one of the best-known fossil records of the common occurrence of single grains and tetrads. Andrews and Pannel (1942) noted a
characteristic retention of the tetrad of Lycospora in microsporangiate cones of Lepidocarpon magnificum. Felix (1954) recorded a frequency of Lycospora tetrads in Lepidozostrobus diversus, but the single-grain feature did seem most common. Felix (1954) and Baibach (1967) found varying degrees of tetrad occurrences in L.oldtianus Williamson, 1893 and Brack (1970) reported essentially the same dual spore pattern in L. schoepfi. Lycospora in tetrads and single grains are therefore common components of Pennsylvanian spore floras. Such dual occurrences are extremely common among extant floras. Trypto of the Typhaceae and Ludwigia of the Onagraceae have species which shed pollen in tetrads and others which shed single grains. The Ericaceae are often considered as characteristically having pollen tetrads, but single-grain dispersal occurs in several species in the family. Similarly, species with both single grains and tetrads are found in the Saxifragaceae and Pyrolaceae. Routine laboratory procedures were used in maceration, with all samples initially treated with hydrochloric acid followed by hydrofluoric acid to digest minerals. In most instances a mild oxidation of humic material was undertaken with Schulte’s solution. Separation was done by a zinc chloride flotation, and Clearcol was utilized as a permanent mountant.

LOCALITY DATA
Materials for this study came from surface exposures and from well cuttings in the Canadian Arctic Islands, with R. umbonatus being present in all samples considered. The associated microflora is given in Table I.

SYSTEMATIC DESCRIPTION
Anteturma sporites H. Potonié, 1893
Turma Plicates (Naumova, 1939) R. Potonié, 1960
Subturma Monocolpates Iversen and Troels-Smith, 1950
Genus Riczisporites (Lundblad, 1954) emend. Lundblad, 1959

Riczisporites umbonatus sp. nov.
Plate 65, figs. 1-19

Diagnosis. Spores oval to elongate. Sulcus irregular, not clearly defined and often represented by elongate, thin exinal area. Body minutely granulose, wall distinct,
1.5 μm-3.5 μm thick. Sculptural elements vary, usually of prominent rounded processes from 4 μm to 13 μm in diameter, but with variations in shape and size to large verrucate 10 μm × 24 μm. Infrequently in tetrads.

Dimensions. (Sixty-five specimens.) Over-all equatorial diameter 40 μm × 45 μm-68 μm × 70 μm. Diameter of spore body 26 μm × 33 μm-41 μm × 56 μm. Rare specimens observed with over-all dimensions of 30 μm × 35 μm and 65 μm × 95 μm but are regarded as aberrants. Tetrad size 75 μm × 80 μm-85 μm × 90 μm.

Holotype. Slide 8920-1. Location 44° 9′ x 112. Plate 65, fig. 1. The holotype has been deposited in the collection of the United States National Museum of Natural History, under catalogue no. 240061 from USNM Catalogue no. 36. The type specimen has been ringed with a diamond-point engraving objective to further facilitate location.

Table 1. Associated Microflora.

<table>
<thead>
<tr>
<th>Localities</th>
<th>Surface</th>
<th>Subsurface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
</tr>
<tr>
<td>Ricciopilites tuberculatus</td>
<td>× × ×</td>
<td>× × ×</td>
</tr>
<tr>
<td>Zebraspores interjectus</td>
<td>× × ×</td>
<td></td>
</tr>
<tr>
<td>Ovalgapollis ovalis</td>
<td>× × ×</td>
<td>× × ×</td>
</tr>
<tr>
<td>Ovalgapollis breviformis</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Limnesporites haurblada</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Protodiploxyphallus sp.</td>
<td>× × ×</td>
<td>× × ×</td>
</tr>
<tr>
<td>Brachysuccus sp.</td>
<td>× × ×</td>
<td>× × ×</td>
</tr>
<tr>
<td>Sverdrupiaella usitata</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Sverdrupiaella buceata</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Sverdrupiaella ornaticingulata</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Sverdrupiaella septentrionalis</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Sverdrupiaella manica</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

Description. Holotype 67 μm × 69 μm over all. Body diameter 50-5 μm. Wall distinct, 3-5 μm thick. Surface-bearing globular processes with diameters 9-12 μm. Processes scattered, about fifteen around body periphery. Spore body minutely granulate, with ill-defined, irregular sulcus.

Remarks. The surface ornament is usually of prominent globose excrescences of fairly uniform size and shape. Some variations exist such as small diameters (Pl. 65, fig. 12), and occasional clavate or pilate shapes. There are rare examples (Pl. 65, figs. 15, 18, 19) which would appear too diverse in ornamentation for inclusion in R. umbonatus, but specimens exist which show transitional characters to these forms. The exinal protuberances may vary with specimens having both rounded ornamentation and verrucate development (Pl. 65, fig. 15). Greatly enlarged, irregularly shaped ornament features are present such as Plate 65, fig. 19, where only five protuberances developed. A trend also exists to near verrucate, flanged morphology (Pl. 65, fig. 18). These departures from the typical morphology are scarce and could represent aberrants. They are so rare and so variable that further taxonomic division seems inappropriate. Much the same variability exists in the well-known R. tuberculatus but is little noted in the literature. Geiger and Hopping (1968) noted considerable variability within R. tuberculatus, with at least four variants present. Schulz (1967) observed wide size and sculpture variations in R. tuberculatus but considered division...
into more species inappropriate. The sulcus is not easily observed, usually being
obscured by the processes, and still ill defined on denuded specimens (Pl. 65, fig. 8).
Often it appears as a thinning in the exine and of irregular shape, but it is a consistent
feature on most specimens.

Ornamentation composed of tubercles or rounded verrucae somewhat similar to those of R. umbonatus are known for other miospores, but there does not appear to be any close comparison with other described taxa. There is some resemblance in ornament to Lophozonotriletes lebedianensis, described from the Famennian of the Russian Platform by Naumova (1953), and Devonian entities are commonly recycled into Arctic Mesozoic sediments. However, the Devonian representatives are easily
differentiated, and the preservation and association characteristics of R. umbonatus
indicate its indigenousness to the Triassic. L. lebedianensis is also clearly trilite,
whereas R. umbonatus is consistently sulcate and never displays a trilite character.

STRATIGRAPHICAL OCCURRENCE

The exact stratigraphical placement of R. umbonatus is somewhat conjectural, as is
often the case in a comparatively new area of investigation and when dealing with such
large areal extent as the Canadian Arctic. We have observed the spore in common
association with several taxa characteristic of the Upper Triassic (Table 1). When
collecting the surface sections considered here, we regarded the field samples in
which R. umbonatus is present as being representative of the Schei Point Formation
and of Karmian age. However, as our subsurface studies progressed, the association
of R. umbonatus in wells has been with marine microplankton successions, which
Fisher and Bujak (1975) have regarded as entirely or certainly mostly of Norian age.

EXPLANATION OF PLATE 65

Figs. 1-19. R. umbonatus sp. nov. All figures × 500. 1, holotype; slide 8920-1, location
(44° 20' × 122°); 2, specimen with large, densely concentrated tubercles, occurring commonly; slide 8920-1,
location (27° 30' × 119°); 3, small, partially denuded specimen with granulose body and sulcus area visible; slide 8920-2, location (35° 30' × 113°); 4, small specimen with sparse tubercles and minimum
over-all diameter for species, sulcus visible, occurring sparsely; slide 8920-2, location (13° 30' × 122°); 5, partially denuded large specimen with granulose body and sulcus area visible; slide 8920-1, location
(40° 12' × 116°); 6, large specimen with densely concentrated tubercles and maximum over-all diameter for
species; slide 8920-2, location (41° 30' × 118°); 7, small specimen with uniform tubercle distribution;
slide 8920-2, location (38° 30' × 112°); 8, isolated, granulose body, sulcus visible; slide 8920-1, location
(39° 12' × 116°); 9, partially denuded specimen with granulose body and sulcus area visible, occurring
commonly; slide 8920-2, location (44° 30' × 120°); 10, partially denuded specimen with sulcus visible;
slide 8920-2, location (27° 30' × 116°); 11, large, distorted specimen, occurring rarely; slide 8920-1, location
(24° 30' × 123°); 12, partially denuded specimen, occurring rarely, with very small diameter tubercles;
slide 8920-2, location (46° 30' × 114°); 13, commonly occurring sub-surface form; slide 12905-1, location
(41° 30' × 122°); 14, commonly occurring form; slide 8920-1, location (21° 30' × 119°); 15, rare, probable aberrant,
with sulcus visible, tubercles irregular; slide 8920-2, location (39° 10' × 108°); 16, tetrad, with large, densely
concentrated tubercles; slide 8920-2, location (36° 30' × 115°); 17, tetrad, with normal tubercle con-
figuration; slide 8920-2, location (40° 10' × 109°); 18, rare, probable aberrant, irregular tubercles forming
verrucae and incomplete flange; slide 8920-2, location (37° 30' × 115°); 19, rare, probable aberrant, massive
irregular tubercules, sulcus area visible; slide 8920-1, location (31° 30' × 120°).
FELIX and BURBRIDGE, Riccisporites from the Trias
A comparison of the surface and subsurface successions is difficult since the surface materials containing *R. umbonatus* are non-marine, whereas the subsurface samples occurred in marine beds. Therefore precise control is difficult to establish with such varied environmental conditions.

Our surface collections have some associations with fossil faunas and lithological sequences that offer some stratigraphical clarification. A prominent feature of the Schei Point Formation is the presence of an Upper K stagnant 'Grif phe Bed' (Douglas 1970, p. 578). This consists of a thick calcareous sandstone with coquinit layers of *Gryphaea* and *Plicatula*. This bed marks the top of the Schei Point Formation in central Ellesmere Island and is also present on Prince Patrick and Borden Islands. A prominent coquina bed, assumed to be the same one, is present in all three of our surface sections. In Sections 77 and 78 *R. umbonatus* has its occurrence within the limits of the coquina bed. In Section 81 *R. umbonatus* occurs immediately above the coquina bed. The conclusion, therefore, is that *R. umbonatus* is Upper Schei Point (Karnian) in Sections 77 and 78 from Borden Island. It has a Lower Heilberg (Norian) occurrence in Section 81 from Prince Patrick Island. The reasoning for Fisher and Bujak (1975) considering their subsurface dinoflagellate assemblage to be Norian seems valid. Accordingly, the common association of *R. umbonatus* with these dinoflagellates in wells would indicate the spore’s subsurface presence to be Norian. Present evidence does not indicate that *R. umbonatus* occurs in Rhaetian age sediments, but that it is presently found in Lower Heilberg Formation (Norian) and Upper Schei Point Formation (Karnian) sediments. The fact that there is still no corroboration of marine and non-marine sediments and considering the actual limited range of Arctic studies, additional range extension of *R. umbonatus* is not precluded. Further studies may well warrant changes in these premises.

ASSOCIATED MICROFLORA

All of the assemblages contained numerous bisaccate pollen, and most seemed assignable to *Protodiploxyenia* (Samoilovich) Schenker, 1970 and *Brachysaccus* Mäddler, 1964. The *Protodiploxyenia* includes *Minutosaccus* Mäddler, 1964, and species represented include *P. gracilis*, *P. potoniei*, and *P. schizeatus*. The bisaccate grains occur in such numbers and variety as to be beyond the scope of this study. However, they appear to be an integral part of the populations, and they did not occur in association with Rhaetian assemblages in the localities treated here.

Table I lists the more prominent taxa occurring in association with *R. umbonatus*. Preservation was good, and *R. tuberculatus* in both surface and subsurface and *Sverdrupiella* Bujak and Fisher, 1976 in the subsurface were generally well represented. Such generally diagnostic Upper Triassic representatives as *Cotnusipites seebergensis* Schulz, 1967, *Tri concatopites communis* Schulz, 1967, *Rhaetopollis germanicus* Schulz, 1967, *Rhaetopollis rhaetica* (Sarjeant, 1963), Davey, Downie, Sarjeant, and Williams 1966, and *Semretipites* Reinhardt, 1962, which we have observed frequently in Arctic studies, are not present in these samples. They have been common in other areas of Upper Triassic interest, and their association has always appeared to be Rhaetian age. *Ricciopollis tuberculatus* was a common entity, and it was usually numerous in all localities. The bisaccates, encompassing a variety
of *Brachysaccus* and *Prostodiploxyplus* were also prominent in all six localities. *Zebraspurites interstipatus* (Thiergart) Klaus, 1960 was noted only from the surface localities. *Sverdrupiella* was usually numerous in the subsurface samples, with *S. ustata* Bujak and Fisher, 1976 being the most common representative. Despite diligent surveillance, *Sverdrupiella* was never observed in surface sections, and the occurrences of *Sverdrupiella* treated by Fisher and Bujak (1975) and Bujak and Fisher (1976) from the Arctic Triassic are all from subsurface deposits.

LOCATION OF SPECIMENS

The exact field position of specimens is noted in the plate explanation as co-ordinates in parentheses. The reference point co-ordinate of 5 × 120 is marked on each slide to assist in locating specimens.

REFERENCES

C. J. Felch, P. P. Burbridge
Sun Oil Company
Richardson
Texas 75080
U.S.A.

Original typescript received 29 March 1976
Revised typescript received 6 September 1976