Limb proportions indicate *Protemnodon*’s locomotion was divergent from modern large macropodines.

Billie Jones, Christine M. Janis, Emily J. Rayfield
School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, BS8 1RJ, UK

1. Introduction
Kangaroos (Macropodoidea) encompass a range of body masses from 500 g to over 70 kg [1]. The most well-known form of kangaroo locomotion is hopping or “bipedal saltation” however, at slow speeds kangaroos employ either a quadrupedal bound or a pentapedal walk where the tail is used as a fifth limb [2]. Some kangaroos are habitually quadrupedal and hop very infrequently. The tree kangaroos (*Dendrolagus* spp.) employ a quadrupedal bound at all speeds, hopping only occasionally when on the ground. The only kangaroo that does not hop at all is the musky rat-kangaroo, *Hypsiprymnodon moschatus* (fig. 1a) [3]. The primary type of locomotion employed by a kangaroo is reflected clearly in its morphology. Optimum body mass for hopping is 50 kg [4], with a shift to hopping predicted at 160 kg due to tendon strain [5], but many Pleistocene kangaroos exceeded this. Evidence suggests a group of extinct giant kangaroos, the thylacines, adopted a bipedal walking locomotion that may have released them from these body mass constraints, allowing them to reach up to 233 kg (*Procoptodon goliah*) [6]. The extinct giant kangaroo (*Protemnodon* fig. (b), however, also frequently grew above the optimum body mass for hopping, reaching up to 166 kg [7]; but its locomotion is currently not understood. Some evidence points to *Protemnodon* being more quadrupedal than any known extant large kangaroo [8], but this has not been studied in any depth. Therefore, we applied a set of osteological indices known to reflect locomotor mode to a comprehensive dataset of macropod limb measurements in order to try to better understand the locomotion of *Protemnodon*.

2. Material & Methods
- **Dataset of long bone measurements** (fig. 2) from 105 individuals across 60 species of macropod, encompassing the entire taxonomic, body mass and locomotor range of Macropodoidea.
- **Species divided into four locomotor categories:** Bipedal saltators, Bipedal walkers, Quadrupedal (either obligate *(H. moschatus)*, or habitual quadrupeds that hop very infrequently) and "*Uniped*" for *Protemnodon*.

3. Results

![Figure 1: (a) Schematic phylogenetic tree of Macropodoidea modified from a molecular phylogeny by Llamas et al. [10] showing major groups. (b) Images of *Protemnodon* highlighting its unusual anatomy.](image)

- **For 7 out of 13 indices, *Protemnodon* and the quadrupedal group were significantly different to the bipedal saltators.**
- **E.g. bipedal saltators typically have MFI values of around 40–60 (fig. 3a) – reflecting elongated metatarsals that elongate the hindlimbs for a more effective stride length and allow longer flexor tendons.** Our results follow this trend but both quadrupedal taxa and *Protemnodon* fall below this range, reflecting much shorter feet that would be efficient during hopping.
- **Overall, compared to extant large hopping species, *Protemnodon* has much shorter feet and longer, more robust forelimbs that are more similar in length to the hindlimbs (fig. 3b). This is anatomically more similar to quadrupedal macropods. However, *Protemnodon* has a long tibia and ulna like that of large extant macropod species (bipedal saltators).**
- ***Protemnodon* occupies a vacant area of morphospace (fig. 4) due to this unusual combination of morphological features.**

![Figure 3: Clustered column plots showing the osteological indices: (a) Metatarsal–Femur Index (MFI) – (b) Intermembral Index (IMI) reflecting the relative lengths of the fore- and hindlimbs. Colours indicate locomotor groups. The dark green bar indicates the only obligate quadrupedal macropod species, *Hypsiprymnodon moschatus*.](image)

![Figure 4: Principal Components Analysis (PCA) of 13 osteological indices calculated for Macropodoidea. Variable factors map shows the loadings of each index within the morphospace.](image)

4. Discussion & Conclusions
- **Osteological indices are a good reflection of primary gait among extant members of Macropodoidea, with locomotor groups clustering together despite the more quadrupedal forms being distributed through the phylogeny (see fig. 1 & 4).**
- ***Protemnodon* possesses an unusual suite of morphological features similar to that of both quadrupedal and large bipedal saltating kangaroos.**
- ***Protemnodon* represents an unknown ecomorph to which there are no extant analogues and its locomotion was clearly divergent from modern large macropods (bipedal saltators).**
- ***Protemnodon* offers a unique opportunity to test our understanding of the locomotion of this group.**

Acknowledgements
Would like to thank my co-authors, Professor Christine Janis and Professor Emily Rayfield for their continued support and contribution to this project. I would also like to thank the University of Bristol for supporting this project and PAUSA for the opportunity to present my work to a wider audience.

Literature cited
2. Dawson, R. S., et al., AUST J ZOOL 2015, 63 (3), 192–200
3. S. Windsor, D. Dogon, A. J. 2006, 143, 165-175
9. Mercree, Chad, University of Bristol, Life Sciences Building, Bristol, BS8 1RJ, UK