
Palaeo-Math 101
The Centre Cannot Hold II: Elliptic Fourier Analysis

The Zahn and Roskies (1972) shape function represents a comprehensive, generalized, and highly 
adaptable method for avoiding the limitations of center estimation when conducting a closed-form outline 
analysis via Fourier decomposition. However, this approach never really caught on with Fourier analysis 
practitioners and/or morphometricians. To a large extent this was probably a matter of not catching on with 
the authors of textbooks on Fourier analysis and the teachers of Fourier analysis methods. Indeed, most of 
the canonical numerical taxonomy and morphometrics textbooks (e.g., Blackith and Reyment 1971, Sneath 
and Sokal 1973, Pimentel 1976, Bookstein et al. 1985, Zelditch et al. 2004) scarcely discuss outline-based 
methods at all  while others have been highly critical  of the very idea of trying to analyze outlines (e.g., 
Bookstein 1991). A lack of easily accessible, public-domain software that could be used for implementing a 
Fourier analysis based on Zahn & Roskies (ZR) shape functions also hampered its application and so its 
acceptance. I will return to a discussion of the ZR shape function in the next column when I take up the topic 
of eigenshape analysis. However, I’d like to close this section on Fourier-based outline semilandmark 
analysis with a presentation of the most popular current method of implementing a Fourier-based outline 
analysis, elliptic Fourier analysis (EFA).1

Although I’ve never seen it acknowledged in any description of the EFA method, there is quite a suspicious 
similarity between EFA and ZR-based Fourier analysis that has always struck me as being suggestive of a 
conceptual link. In order to illustrate this let’s return to the pathological  outline of the benthic  foraminiferal 
species Ramulina globulifera (Fig. 1).

A.  B.

Figure 1. Shape of  the spinose benthic foraminifer species Ramulina globulifera. A. Image of  R. globulifera specimen, 
B. implied outline defined by  an interpolation of  300 equally  spaced boundary outline semilandmarks. The starting 
point for digitization is shown by the green landmark.

Figure 1. Shape of  the spinose benthic foraminifer species Ramulina globulifera. A. Image of  R. globulifera specimen, 
B. implied outline defined by  an interpolation of  300 equally  spaced boundary outline semilandmarks. The starting 
point for digitization is shown by the green landmark.

As you will  recall from the last column, the problem with this outline is that it’s very far from exhibiting a 
single-valued character. No matter what center is selected the outline cannot be represented accurately by a 
shape function based on the lengths of radius vectors drawn from the center to the periphery such that the 
angle between the radius vectors is constant and all radius vectors cross the outline at one, and only one, 
point. The ZR shape function solves this problem by interpolating a set of semilandmark points around the 
outline such that the inter-point distance is constant and the shape represented by a series of net angular 
deviations from a starting segment. This operation transforms the outline of any curve, no matter how 
complex, into a pattern that conforms to the definition of a mathematical function (Fig. 2).2

1 This technique was originally named elliptic Fourier analysis (Giardiana and Kuhl 1977), but has also been referred to 
as elliptical Fourier analysis (e.g., Lestrel 1997).

2 In mathematics a function is a statement or argument in which every input value is associated with one and only one 
output value.



Figure 2. Zahn and Roskies shape function for a 300-point interpolation of 
the R. globulifera outline semilandmark data expressed as the net deviation 
of angles drawn between successive semilandmark around the form (ϕ).

The Z-R technique transforms a complicated outline into an alternative format that loses none of the outline’s 
geometric  information content, but is tractable to handle in the context of a Fourier analysis. It works fine. But 
this isn’t the only solution to complex outline representation.

Note that the abscissa (traditionally the ‘x-axis’) of the plot in Figure 2 is simply the ordinal  number of 
intervals round the the outline. There are n such intervals in any curve where n  is the number of 
semilandmarks used to represent the curve’s form or shape. Obviously the ZR shape function is employing 
variations in the coordinate positions of both the x and y axes in order to determine the next angular direction 
to subsequent boundary outline locations (ϕ). But what if we considered these x and y deviations between 
successive semilandmark locations separately?

Figure 3 shows the form functions that result from plotting the x coordinates and the y coordinates of 
successive semilandmark points separately.

A. B.

Figure 3. Form functions for separate x (A) and y (B) coordinate values of the R. globulifera outline.Figure 3. Form functions for separate x (A) and y (B) coordinate values of the R. globulifera outline.

These are form functions rather than shape functions because, as the raw coordinate values were used, the 
x and y values retain their scale. Since only one form is shown here the distinction between form and shape 
is not important. Regardless, it should be noted that, since this representation can utilize the raw coordinate 
values, it is possible to use this shape function to perform a form analysis or, if the semilandmark points are 
rescaled to eliminate size differences among a set of outlines, a shape analysis. 

Like the ZR shape function, all the geometric information present in the original  semilandmark coordinate 
data is present in these plots. Also as with the Z-R shape function, the advantage of this format is that the 
resulting data conform to the definition of mathematical  functions, and so can be subject to methods of 
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analysis designed to extract information from function-type datasets. This will always be the case for any 
conceivable outline; even open outlines and/or those that intersect themselves. Moreover, because these 
shape/form functions are simply direct readings of variation in the x and y aspects of the outline boundary 
coordinates, the constraint of equi-angularity (standard radial Fourier analysis) or equal inter-coordinate 
spacing (ZR Fourier analysis) is relaxed. Forms can be represented by any number of semilandmark 
coordinate points the analyst deems appropriate and inter-landmark spacings can assume any value(s) 
necessary to ensure comparable portions of the outline are aligned properly in the semilandmark sequences. 
The only requirements are that the same number of semilandmarks be used to represent the form/shape of 
the outlines of all  specimens in the sample and (for EFA) that all outlines in the sample be closed (= end at 
the same landmark coordinate position at which they began). In practice, the ability to vary the inter-
semilandmark spacing as a strategy for ensuring biological correspondence between outline segments has 
rarely been used in any EFA application. But this does not mean it could not be used to boost biologically 
important signals in the data and improve the interpretability of EFA results.

If an alternative form of outline shape/form function representation was all that was involved with an EFA it 
would simply represent a minor variant of the ZR shape function approach. However, the developers of this 
method went further than Zahn and Roskies (1971) and used the separation of x and y form/shape functions 
as the beginning of a new approach to the Fourier analysis of closed-form outlines. Their key insight in this 
regard was to think of the total set of length and orientation steps around any outline (t) as being the sum of 
apparent displacements in x and y directions (see Kuhl and Giardina 1982, Ferson et al. 1985, Lestrel 1997). 
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Where: n = the harmonic number
 N = the maximum harmonic number
 t = displacement along outline
 T = total displacement

This allowed Kuhl and Giardina (1982) to derived a set of parametric  equations that could be used to fit a set 
of Fourier harmonic  amplitudes to the outline semilandmark data directly. The elliptic  Fourier coefficients for 
the x aspect of the form/shape function are:
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Where: k = the total number of steps around the outline
n = the harmonic number
∆x = the displacement along the x axis between 

point p and p+1
∆t = the length of the step between point p and p+1
tp = accumulated length of step segments at point p
T = sum of lengths of all steps around outline

Similarly, the elliptic Fourier coefficients for the y aspect of the form/shape function are:
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Giardina and Kuhl (1977) showed that equations 25.1 and 25.1 specify an outline-specific series of elliptical 
shapes of monotonically increasing spatial detail that, when summed together, represent an approximation of 
the form. This approximation minimizes of the deviation of the empirical  outline with respect to the estimated 
model in a least-squares sense. The EFA outline estimation process can be illustrated by reconstructing the 
form of the R. globulifera outline using different numbers of EFA harmonics (Table 1). All  harmonics 
calculated in this manner are independent from each other. Therefore, the sets of harmonic coefficients 
representing each can be used as empirical  form-descriptors in their own right, either singly or in 
combination.

Table 1. Sequential reconstruction of the R. globulifera form from the four elliptic Fourier terms calculated 
over different sets of harmonic amplitudes (n).
Table 1. Sequential reconstruction of the R. globulifera form from the four elliptic Fourier terms calculated 
over different sets of harmonic amplitudes (n).
Table 1. Sequential reconstruction of the R. globulifera form from the four elliptic Fourier terms calculated 
over different sets of harmonic amplitudes (n).
Table 1. Sequential reconstruction of the R. globulifera form from the four elliptic Fourier terms calculated 
over different sets of harmonic amplitudes (n).
Table 1. Sequential reconstruction of the R. globulifera form from the four elliptic Fourier terms calculated 
over different sets of harmonic amplitudes (n).

n = 1 n = 3 n = 5 n = 7 n = 9

n = 13 n = 15 n = 20 n = 30 n = 40

As can be appreciated from Table 1, the four terms of the elliptic  Fourier spectrum, calculated over a series 
of harmonic amplitudes (n), are sufficient to represent the form of any outline shape to any desired level of 
accuracy. Generally speaking, an empirical  assessment of the number of harmonics necessary to represent 
the most complex shape in the sample is made either by eye or by reference to some tolerance criterion (see 
MacLeod 1999). Each specimen in the sample is then re-described by using this number of EFA harmonics. 

Mistakes are often made by inexperienced EFA practitioners (indeed by inexperienced outline data analysts 
in general), by using arbitrary criteria to decide how many Fourier harmonics to use to quantify the shapes 
present in a sample. This is especially important in the context of EFA analysis because four terms are 
required to quantify each harmonic: two terms for the x series and two for the y. If reduction of the 
dimensionality of a shape representation problem is the purpose of undertaking an EFA, the most accurate 
representation of the R. globulifera outline presented in Table 4 (n = 40) would require 160 terms to 
represent. While this is a distinct improvement over the 300 x,y coordinates used to quantify the outline of 
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the original  shape, it remains a high-dimensional dataset. However, if the number of harmonics used to 
represent this form was cut back to a lower number — say 10 — in order to achieve substantial 
dimensionality reduction (from 600 variables to 40), the quality of the form’s representation would suffer. Of 
course, the R. globulifera outline is an extreme example. In many cases relatively small numbers of 
harmonics will be able to represent biological  forms of interest (see Ferson et al. 1985 for an example). 
Nevertheless, it is always advisable to make this critical decision on the basis of an inspection of 
reconstructed forms rather than simply plucking a value for N out of thin air.

In addition to containing information about the shape of an an outline, the An, Bn, Cn, and Dn coefficients 
contain information about the location, size, and rotational  orientation of the outline. In some cases this 
information may be of interest. But in most biological morphometric analyses shape variation is the primary 
target. Although these extraneous variables could always be corrected for through various ad hoc 
normalization procedures or by subjecting the semilandmark sets to generalized least-squares Procrustes 
alignment (see Rohlf and Slice 1990, MacLeod 2009a) prior to EFA, Kuhl and Giardina (1982) specified a 
direct procedure for normalizing the EFA coefficients calculated from raw outlines for these factors. The basic 
equation for achieving this normalization is as follows.
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Obviously several of the terms of this expression need to be explained and defined. The E* coefficient is the 
magnitude of the best fitting ellipse. This is, what Kuhl and Giardina (1982) regarded as, effectively, the size 
term, the influence of which is removed from the data by reciprocal scaling. This E* coefficient is calculated 
using the following expressions.

E* = a*2 + c*2 (25.8)

Where: a* = A1 cos! + B1 sin! (25.9)

c* = C1 cos! + D1 sin! (25.10)

Of course, the A1, B1, C1, and D1 terms in equations 25.9 and 25.10 are the four coefficients associated with 
the first EFA harmonic which is, in all cases, an ellipse (see Table 1). The ϴ term is the angle between the 
starting point of the outline digitization sequence and the major axis of the ellipse. This angle is given by the 
following expression.
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The ϴ correction is factor is used in equations 25.7, 25.9, and 25.10 to align the EFA harmonic sequence to 
an internal standard set by the first harmonic. The final set of EFA coefficients are adjusted to bring the 
estimated outline model into a standing rotational orientation via calculation of the ϕ coefficient, as follows.
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When these normalizations are applied the values of a1 = 1.0 and those and b1 and c1 = 0.0 signalling the 
loss of information inherent in the normalization procedure. This procedure is formally equivalent to the 
normalizations applied by Procrustes superposition. A comparison of the raw and normalized EFA 
coefficients for the first ten EFA harmonic amplitudes for the R. globulifera outline is shown in Figure 4.
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A. B.

Figure 4. Raw (A) and normalized (B) EFA coefficients for the first 10 EFA harmonic amplitudes of  the R. globulifera 
outline.  Note rescaling of  all harmonic spectra as well as the setting of  a1 to 1.0 and both b1 and c1 to 0.0 as a result of 
the normalization procedure.

Figure 4. Raw (A) and normalized (B) EFA coefficients for the first 10 EFA harmonic amplitudes of  the R. globulifera 
outline.  Note rescaling of  all harmonic spectra as well as the setting of  a1 to 1.0 and both b1 and c1 to 0.0 as a result of 
the normalization procedure.

While most applications of EFA in morphometric contexts will  require implementation of all  three 
normalizations, there may be occasions in which size, location of the starting point for digitization, and/or 
rotation are parameters of interest. In these cases the form of equation 25.7 can be adjusted so that one or 
more of these factors remains present in the harmonic spectra.

Once a set of normalized harmonic  spectra have been obtained from a sample of shapes these are most 
typically used as input into a secondary multivariate data analysis procedure (e.g., PCA, PCoord, MDS, CVA, 
PLS) in order to extract the major dimensions of shape variation, represent patterns of shape variation in a 
low-dimensional ordination space, investigate questions of group separation or distinctiveness, and/or 
document the association of particular aspects of outline shape variation with variables external to the 
morphological data per se  and, in so doing, test causal hypotheses. As I have noted in previous discussions 
of these procedures, results generated by their application can be inspected and/or used as input into tertiary 
statistical procedures designed to test specific  patterns via reference to a probability or likelihood models. 
They can also be used to obtain models of shape variation patterns at particular points along the axes of the 
ordination spaces so defined, or along any trajectory through the hyper-dimensional ordination space that 
the data analyst cares to specify.

As an example of the use of EFA in the context of a morphometric  investigation I will apply it to the same 
benthic foraminiferal test outlines I used in the last column to illustrate use of the ZR shape function with 
standard Fourier analysis. The images from which these outlines were derived are shown in Figure 5.
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Figure 5.  Benthic foraminiferal shapes used in the example analysis. Note the presence of  shapes with multi-
valued outlines.

Each outline was quantified using 200 equally-spaced semilandmark points with the landmark from which 
digitization started being located at the center of the aperture. Inspection of outline morphologies 
reconstructed using different numbers of EFA harmonic  amplitudes indicated that, for this dataset, the major 
features of each outline could be captured using the first 25 normalized elliptic  Fourier harmonics (see Table 
2).

Table 2. Outline silhouettes for benthic foraminiferan shapes reconstructed from normalized EFA coefficients using 25 
harmonic amplitudes. See Figure 4 for species names.
Table 2. Outline silhouettes for benthic foraminiferan shapes reconstructed from normalized EFA coefficients using 25 
harmonic amplitudes. See Figure 4 for species names.
Table 2. Outline silhouettes for benthic foraminiferan shapes reconstructed from normalized EFA coefficients using 25 
harmonic amplitudes. See Figure 4 for species names.
Table 2. Outline silhouettes for benthic foraminiferan shapes reconstructed from normalized EFA coefficients using 25 
harmonic amplitudes. See Figure 4 for species names.
Table 2. Outline silhouettes for benthic foraminiferan shapes reconstructed from normalized EFA coefficients using 25 
harmonic amplitudes. See Figure 4 for species names.
Table 2. Outline silhouettes for benthic foraminiferan shapes reconstructed from normalized EFA coefficients using 25 
harmonic amplitudes. See Figure 4 for species names.

These EFA coefficients were then assembled into a data matrix. This matrix did not include the a1, b1, and c1 
amplitude coefficients as these were set to constant values of 1.0, 0.0, and 0.0 respectively as a result of the 
size, position, and rotation normalization procedure (see above). Overall, the EFA procedure resulted in 
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these outlines being described by (25 x 4) - 3, or 97 variables. These were used as input to a covariance-
based principal components analysis (PCA) whose purpose was to assess the major modes of shape 
variation in the sample and establish a low-dimensional  ordination space within which patterns of shape 
similarity and difference could be assessed. Results of the PCA analysis indicate that over 90 percent of the 
observed outline shape variation can be represented on three orthogonal  principal component axes. 
Ordinations of the outline shapes within this three-dimensional subspace are shown in Figure 6.

A.

B.

Figure 6.  Distribution of  the 12 benthic foraminiferan test outlines shown in Figure 5 and 
Table 2 in the shape space formed by  the first three principal components of  the 
covariance matrix calculated between normalized EFA coefficients. See text for 
discussion.

Inspection of the distribution of species along these three principal  component axes suggests that PC-1 
captures the distinction between tests characterized by uniserially arranged globular chambers (e.g., 
Hormosinelloides guttifer) and flaring tests with multi-serially arranged chambers (e.g., Bulimina mexicana), 
PC-2 the distinction between tests whose chambers increase in size with development (e.g., 
Hormosinelloides guttifer) as opposed to those whose tests are characterized by a relatively thin, tubular 
neck (e.g., Lituotuba lituiformis), and PC-3 the distinction between tests with complex, lobulate peripheries 
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that are thick in the middle (e.g., Uvigerina proboscidea) relative to those characterized by a medial 
constriction (e.g., Reophanus berggreni). It’s also important to note that, in terms of outline shape variation, 
for this sample Lagena sulcata, Lituotuba lituiformis and Reophanus berggreni all represent shape outliers.

While sufficient for a interpretation of the generalized geometry of the principal component spaces, the 
qualitative trends described above fail  to represent the detailed geometric contrasts that exist along the 
primary PCA vectors, information which has been captured by the original outline data and employed by the 
eigenvector equations that define PC-1, PC-2, and PC-3. Fortunately, we are not restricted to such 
qualitative approaches to EFA shape space interpretation.

The eigenvector loading coefficients that define PC-1, PC-2 and PC-3 represent a series of cosines that 
quantify the angular relationship between these eigenvectors and the original variables in a manner that 
takes note of covariance structure of these data (see MacLeod 2005). Since this is the same information we 
used previously to construct geometric modes of PCA form/shape spaces for landmark (MacLeod 2009b, 
2010a) and outline data (MacLeod 2011), it should be possible to create similar models for the EFA-defined 
PCA ordination spaces shown in Figure 4. It’s possible to calculate these models using either the direct 
landmark or thin plate spine approaches (see MacLeod 2009b and 2010a respectively), though the former 
seems the more natural and informative choice for these data. The models calculated by this method will be 
expressed in terms of the original variables submitted to the EFA-PCA analysis. These may be converted 
back to sets of x,y coordinate data using the following equations.

xn = an cos(nt)+ bn sin(nt)
n=1

N

! (25.13)

yn = cn cos(nt)+ dn sin(nt)
n=1

N

! (25.14)

Where: n = harmonic amplitude
N = maximum no of harmonic amplitudes used in the 
 construction
t = evaluation angle (varies from 0 to 2π)

n = harmonic amplitude
N = maximum no of harmonic amplitudes used in the 
 construction
t = evaluation angle (varies from 0 to 2π)

Application of equations 25.13 and 25.14 to sets of EFA amplitude coefficients calculates at a series of 
coordinate point locations along the PC-1, PC-2 and PC-3 axes resulted in construction of the along-axis 
shape models shown in Table 3.

Table 3. Elliptic Fourier amplitude coefficient models existing are coordinate locations along the first three principal 
component axes of  the outline shape covariance matrix. The specific  coordinate position at which each model was 
calculated is shown below each model (in parentheses).

Table 3. Elliptic Fourier amplitude coefficient models existing are coordinate locations along the first three principal 
component axes of  the outline shape covariance matrix. The specific  coordinate position at which each model was 
calculated is shown below each model (in parentheses).

Table 3. Elliptic Fourier amplitude coefficient models existing are coordinate locations along the first three principal 
component axes of  the outline shape covariance matrix. The specific  coordinate position at which each model was 
calculated is shown below each model (in parentheses).

Table 3. Elliptic Fourier amplitude coefficient models existing are coordinate locations along the first three principal 
component axes of  the outline shape covariance matrix. The specific  coordinate position at which each model was 
calculated is shown below each model (in parentheses).

Table 3. Elliptic Fourier amplitude coefficient models existing are coordinate locations along the first three principal 
component axes of  the outline shape covariance matrix. The specific  coordinate position at which each model was 
calculated is shown below each model (in parentheses).

Table 3. Elliptic Fourier amplitude coefficient models existing are coordinate locations along the first three principal 
component axes of  the outline shape covariance matrix. The specific  coordinate position at which each model was 
calculated is shown below each model (in parentheses).

Table 3. Elliptic Fourier amplitude coefficient models existing are coordinate locations along the first three principal 
component axes of  the outline shape covariance matrix. The specific  coordinate position at which each model was 
calculated is shown below each model (in parentheses).

PC Axis Model 1 Model 2 Model 3 Model 4 Model 5 Overlay

PC-1

(-0.20,0.00,0.00) (-0.09,0.00,0.00) (0.01,0.00,0.00) (0.11,0.00,0.00) (0.21,0.00,0.00)

PC-2

(0.00,-0.20,0.00) (0.00,-0.12,0.00) (0.00,-0.04,0.00) (0.00,0.03,0.00) (0.00,0.11,0.00)
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PC-3

(0.00,0.00,-0.15) (0.00,0.00,-0.09) (0.00,0.00,-0.03) (0.00,0.00,0.03) (0.00,0.00,0.08)

As can be seen graphically in the table — especially when the individual along-axis shape models are 
overlain to create a ‘strobe‘ effect — the geometric trend being expressed along each axis is a function of (1) 
the degree of inflation (PC-1) and lobateness PCs 2 & 3) of the test peripheries on either side of the test’s 
long axis. Based on these results the distinction between low scores and high scores along PC-1 reflects the 
distinction between broadly elliptical shapes with concave to convex lateral margins respectively. The PC-2 
axis captures aspects of spatial  changes in lateral lobateness with respect to the test’s long axis, with low 
scores representing lobe formation confined to late stages of test development and high scores representing 
patterns of lateral lobe formation that occur at earlier developmental stages. Finally, PC-3 expresses 
distinctions between the lobateness of the medial  portion of the test with respect to the two ends. Here, tests 
characterized by strongly convex medial outlines sandwiched between distinctly pinched terminal  regions 
project to low positions along this axes while those characterized by bulbous terminal  regions separated by a 
narrow, concave, medial  lobe project to high positions. The dramatic  increase in geometric  insight into the 
natural of EFA ordination spaces that can be achieving through use of models to query and interpret the 
EFA-PCA is (I hope) obvious.

Like Z-R Fourier analysis, elliptic Fourier analysis effectively addresses the need for a numerical method that 
can be used to represent outline form/shape variation in a rigorously quantifiable, geometric  manner while 
overcoming the limitations of radial  Fourier analysis in terms of its ability to treat single and multivalued 
outlines and its freedom from being subject to the centroid-location problems which plague the latter, at least 
with respect to some outlines. Elliptic  Fourier analysis is fully extensible to the treatment of 3D outlines (see 
Lestrel  1997). Owing to its dependence on ellipses EFA is technically restricted to the analysis of closed 
outlines. However, Kuhl and Giardina (1982) include example analysis of forms that come very close to being 
open curves in their discussion of EFA applications, though the ability of EFA to reconstruct such curves 
seems decidedly suboptimal to me. 

Owing to the availability of public-domain software for performing EFA, the technique has proven reasonably 
popular with morphometricians despite the fact that much of the early geometric morphometric literature was 
rather hostile to outline analysis methods in general  and Fourier-based methods in particular. There were two 
reasons for this. The first has to do with non-correspondence between the biological features that sequences 
of semi-landmark points may fall  on when an outline is sampled. This is a well-known problem that I’ll  have 
more to say about in my discussion of eigenshape analysis. In terms of sampling the form, EFA can 
circumvent this issue rather easily because it does not assume that the spacing between semi-landmark 
points will be equal. Accordingly, it is a relatively simple matter to subdivide the outline into segments at true 
landmarks and use semi-landmark sequences to ‘join’ the landmarks in a matter that accurately represents 
for form/shape of of the inter-landmark boundary curves (see MacLeod 1999 for an example of this 
procedure). Data collected in this way can be submitted to an EFA analysis without any further processing. 
However, this sampling protocol has rarely been used with EFA despite the clear advantages of doing so. 

The second criticism that has been made of the EFA (and all Fourier-based) procedures is that they 
unnecessary. The point of all Fourier analyses is to estimate the form of a signal  — in the case of 
morphometrics a morphological  signal. The Fourier approach provides sophisticated and mathematically 
elegant tools with which to do this. But that’s all they do. Fourier harmonic  amplitudes and phase angles 
provide a means to describe outline form/shape variation in quantitative terms. But sample ordinations, the 
major directions of sample form/shape variation, discrimination between sample sub-groups, comparison of 
patterns of co-variation, form/shape modelling, statistical testing of various sorts, etc. all must be performed 
on Fourier-based re-descriptions of morphological  variation by other procedures. This raises the question of 
why to take one’s morphological data through a Fourier analysis in the first place as opposed to working 
directly with the semilandmark outline coordinates themselves as these can easily be aligned and normalized 
for various sources of extraneous information using other methods (e.g., Bookstein shape coordinates, 
Procrustes shape coordinates). 

As an experiment to address this question empirically we can perform a quick analysis of the same benthic 
foraminiferal  outline data using the Procrustes PCA technique. Results of the projection of the outline shape 
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coordinate data into the spaces formed by the first three eigenvectors of the shape-coordinate covariance 
matrix the are shown in Figure 7. Close comparison of figures 6 and 7 reveals a few differences (e.g., 
position of Am. jarvisi along PC-3) which are to be expected considering the differences between the EFA 
and Procrustes PCA datasets. However, both the gross and detailed similarities between the two ordinations 
are even more striking. It is doubtful that routine interpretations of these two spaces would differ 
substantially.

A.

B.

Figure 7.  Distribution of  the 12 benthic foraminiferan test outlines shown in Figure 5 and 
Table 2 in the shape space formed by  the first three principal components of  the 
covariance matrix calculated between Procrustes superposed shape coordinates. See 
text for discussion.

Rohlf (1986) argued that Fourier analysis might be preferred to the analysis of coordinates because use of 
only the first few Fourier harmonics, in effect, causes the outline to be smoother — thus eliminating small 
scale variation that may not (or may) be of importance in any given analysis. If a sub-set of EFA harmonics 
are selected for analysis a smoothing of the represented outline would certainly be the case. But Rohlf’s 
argument strikes me as one that misses the point. If smoothing of an outline is acceptable or important there 
are many approaches to this operation that could be employed as an initial  data-processing step. The most 
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obvious of these is to reduce the number of coordinate points used to represent the boundary form/shape to 
the minimum needed to achieve an objective geometric tolerance (see MacLeod 1999 for an example 
algorithm). When this is done it is often surprising how few boundary outline semilandmarks are really 
necessary to replicate even complex outlines. But once this is done the difference between raw coordinates, 
Z-R Fourier and EFA become apparent. Taking (say) 50 semilandmarks as an example, the raw analysis of 
coordinates would imply the analysis of 50 x and 50 y coordinates, 100 variables in total. Under the Z-R 
Fourier approach 25 amplitudes and 25 phase angles or, more commonly, just the 25 unique harmonic 
amplitudes would be required, totalling to either 50 or 25 variables respectively. But under EFA each of the 
25 unique Nyquist harmonics would require four Fourier coefficients to represent the series, specifying either 
100 or 97 variables in total, depending on whether these coefficients were normalized. Of course, the data 
analyst could simply throw all these EFA variables into a PCA analysis and discard all but the first few 
principal components as being unimportant. But this standard dimensionality-reduction technique applies 
equally well to PCA results from raw coordinates, Z-R Fourier shape functions, and indeed to radial  Fourier 
data. 

Quite clearly the jury remains out on the question of whether any real advantages are gained by performing a 
Fourier analysis as a processing step that re-describes the shape in and alternative quantitative format. In 
this way Z-R Fourier and EFA are reminiscent of principal  warps analysis (see MacLeod 2010b). If you are 
considering using EFA for an outline study I encourage you to explore some of its more unique, yet little-
used, variants (e.g., the ability to analyse non-uniformly spaced semilandmarks) in order to add useful and 
distinctive features to your investigation’s design. But more than this I would recommend you defer the 
analysis until we have had an opportunity to consider a far more flexible outline sampling - data analysis 
procedure in detail: eigenshape analysis.

In terms of software, a number of different outline processing, outline digitization, and EFA applications for 
2D and 3D data are available from the SUNY Morphometrics web site: http://life.bio.sunysb.edu/morph/. The 
industry standard in this area, however has to be Jim Rohlf’s EFA application for Windows operating 
systems. Among the more comprehensive software packages only Jim Rohlf’s NTSYS (http://
www.exetersoftware.com/cat/ntsyspc/ntsyspc.html) and Øyvind Hammer’s Past (http://folk.uio.no/ohammer/
past/) programme packages have implemented forms of the EFA procedure. All the analyses and graphics 
used in this column (including the EFA models) were calculated using custom software I have written for 
Wolfram Researcher’s Mathematica™ software, any or all of which I’d be happy to share on request.

Norman MacLeod
N.MacLeod@nhm.ac.uk

Palaeontology Department, The Natural History Museum
Department of Earth Sciences, University College London

Nanjing Institute of Geology & Palaeontology, Chinese Academy of Sciences
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