
Palaeo-Math 101
Centroids, Complex Outlines & Shape Functions

In the last column we learned how to used a powerful mathematical technique — the Fourier series — to 
characterize the shape of any single-valued outline no matter how complex by breaking it down into a set of 
consistently defined geometric descriptors (= shape variables) that we could then use to both analyze and 
model patterns of shape variation within any sample. However, as powerful as Fourier analysis is, the classic 
or ‘radial’ approach has several built-in disadvantages. Chief among these is the requirement that all outlines 
included in the sample be ‘single-valued’ (Fig. 1).

Geometers call a closed curve ‘single-valued’ when any radius vector drawn from the outline’s centre 
crosses the curve in one and only one location. For this class of outlines the radius-vector sampling scheme 
we discussed and illustrated last time effectively transforms the outline into an empirically defined 
mathematical function.1 Once a set of outlines has been re-described in terms of their function-equivalent 
geometries, it’s possible to use the Fourier series to tease apart their forms/shapes and assess the sample 
for patterns of form/shape similarity and difference. However, many biological forms are characterized by 
multi-valued outlines, in which at least some radius vectors cross the boundary at more than one location or 
in which the very idea of an outline centre is problematic for one reason or another (e.g., the mean x,y 
coordinate location falls outside the object’s boundary, see Fig. 2). 

These curves cannot be analysed using a standard radial Fourier sampling scheme because they cannot be 
transformed into valid mathematical functions. In these cases the trick is to find a way of converting the 
complex outline into a configuration that (1) preserves as much of the geometric information of relevance to 
the scientific question at hand as possible and (2) has the form of a mathematical function. Before we begin 
our discussion of non-radius vector-based shape functions though, we need to take care of an ugly little 
detail left over from our previous discussion of radial Fourier analysis.

This detail focuses on calculation of a single-valued outline’s centre or centroid. Radial Fourier analysis 
requires location of the centre because it is from that point that set of radius vectors used to describe the 

Figure 1. Fossil specimens exhibiting single-valued outlines.

Figure 2. Fossil specimens exhibiting multi-valued outlines.

1 In mathematics a function is a relation in which any input value (x) has exactly one output value (y).  Hence the 
expression x + 2 = y is a function whereas the expression x + 2 = 3 is not.



outline emanate. As you may recall, a basic assumption of radial Fourier analysis is that the set of adjacent 
radius vectors subtend equal angles as they move around the outline. This ensures that the form or shape 
has been sampled evenly and — more importantly — that the mathematical representation of the form/shape 
has not been biased by inconsistencies in the placement of the radius vectors relative to each specimen’s 
geometry.

In the simplest of situations there will be some sort of landmark point that lies relatively close to the form’s 
center can be found on all specimens in the sample. In this case the data analyst is perfectly justified in using 
this landmark point as the shape’s ‘center’ from which a set of coordinate points can be located such that the 
angles between adjacent radius vectors are equal (Fig. 3). Since this landmark point is defined by a 
consistently and universally relocatable point defined and accepted a priori as the reference point for the 
geometric description of each shape, the equi-angular sampling criterion will always be true. 

But what happens if we don’t have an objectively locatable landmark point in this region of the shape that 
can be used as the reference? The fallback convention is to calculate the geometric centroid of the outline as  
the mean of all x-coordinate values and the mean of all y-coordinate values.

  
x = xi

i=1

n

∑ n (23.1)

  
y = yi

i=1

n

∑ n (23.2)

Where:
           xi  = ith x-value

           y i  = ith y-value

           n  = total number of specimens in sample

Once this centroid has been obtained it can be used, first to mean-centre the outline and then to calculate an 
initial estimate of the raw set of radius vectors by converting the xi,yi coordinate values into their ri,ϴi polar 
coordinate equivalents.

  
ci = (xi

2 + yi
2 ) (23.3)

Figure 3. Fossil maoritid ammonite sampled using an equi-angular radius vector sampling 
scheme with the scheme’s centroid being placed at the position of  the specimen’s proloculus. 
Note this centroid location is not synonymous with the outline’s geometric centroid. Nevertheless, 
this  location has the advantage of  being able to be located on (virtually) every  maoritid specimen 
and represents a point of unquestionable biological and geometric significance.
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θ i = tan−1 yi xi( ) (23.4)

Next, a set of new radius vectors is calculated such that angle subtended between adjacent vectors is equal.  
The maximum number of Fourier amplitude and phase angle coefficients (= harmonics) that can be 
calculated from any given collection of boundary outline coordinates is set by the following relation.

  k = (n −1) / 2 , if n is odd
(23.5)

  k = n / 2 , if n is even
(23.5)

In these equations k is the number of Fourier harmonics and n the number of x,y points used to describe the 
outline. This relation is often referred to as the Nyquist frequency. If the Fourier series is expanded beyond 
the limit set by the Nyquist frequency errors will result due to aliasing of the spatial signal. 

From a practical point of view the problem the Nyquist frequency limit imposes on Fourier calculations is one 
of interpolation. These days it’s almost always the case that digitizers collect boundary outline coordinates 
that are not arranged in an equiangular series with respect to any central point. Conversion of a sequence of 
outline coordinates to an equiangular series usually amounts to working through the following procedure.

1. Deciding how many harmonics are necessary to describe the form(s) under consideration adequately
2. Calculating the angle between successive radius vectors as   θ = 360 / 2k
3. Determining the lengths of the 2k equiangular radius vectors by searching the original data that have 

been converted to polar coordinate form, locating empirical radius vectors that lie on either side of the 
desired radius vector, and estimating the length of the desired radius vector via linear interpolation

The radius vectors calculated as a result will be equiangular relative to the initial outline centroid, the position 
of which was estimated using all the coordinate points in the digitized outline (equations 23.1 and 23.2). 
Unfortunately, this does not mean these 2k radius vectors will be equiangular with respect to their own 
centroid. As the Fourier series equations we used in the last essay assume strict equi-angularity among the 
radius vectors, any deviation from this condition will introduce error into the calculation of the harmonic 
amplitudes and phase angles.

Schwarcz and Shane (1969), Full and Ehrlich (1982) and Boon et al. (1982) were the first to bring this 
problem to the attention of the geological community, originally in the context of the analysis of sedimentary 
particle shape. To resolve this problem they recommended comparing the centroid of the set of radius 
vectors that will be used to calculate the Fourier harmonics (= harmonic spectrum centroid) to the initial 
centroid used to calculate the total set of radius vectors. If the harmonic spectrum centroid lies within a 
tolerance envelope about the initial centroid no adjustment need take place. Full end Ehrlich (1982) 
recommend this tolerance envelope have a value of ‘0.007 pixel values’, which seems to be an empirically 
determined limit based on their experience with sand grain shape analyses. My own experiments with radial 
Fourier centroid estimation suggest that a tolerance envelope about the initial centroid of 1.0 percent of the 
outline’s maximum x, or maximum y dimension (whichever is longest) delivers approximately the same level 
of consistency.

Figure 4.  Outlines of  four planktonic foraminifer species with statistics on how many  adjustment iterations 
were required to find a stable centroid location using both the Evans and Revised Evans methods. Note that 
the centroid of  Globorotalia truncatulinoides and Goborotaloides hexagona did not converge even after 40 
iterations under the Evans Method.
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Obviously, if there is no need for adjustment of the initial centroid, radial Fourier analysis can proceed as 
outlined in the previous column (see also Fig. 4). In some instances though, the positions of the initial and 
harmonic spectrum centroids will differ by a value greater than this tolerance envelope. For these cases Full 
and Ehrlich (1982) offer two iterative estimation procedures.

The first is termed the ‘Evans Method’ after David Evans who devised the solution originally (see also Boon 
et al. 1982). This method involves drawing a chord from the harmonic spectrum centroid back to the initial 
centroid and locating a new centroid at a position equal to twice the deviation between these two centroids 
but in the opposite direction. Algorithmically, this new centroid value can be found as follows.

  x̂h = xh − 2xi (23.6)

  ŷh = yh − 2yi (23.7)

Where:
            xinitial,y initial  = coordinates of the initial centroid

            xhsc ,yhsc  = coordinates of the (old) harmonic spectrum centroid

            x̂hsc ,ŷhsc  = coordinates of the (new) harmonic spectrum centroid

Once calculated, the new estimate of the harmonic spectrum centroid can be used to recalculate the polar-
coordinate transformation of the original x,y outline data and the harmonic spectrum radius vectors. The 
tolerance envelope test is then repeated. If the new initial and harmonic spectrum centroids fall within the 
tolerance envelope, the estimation procedure is terminated and the radial Fourier spectrum calculated. If not, 
the centroid is re-estimated again using equations 23.6 and 23.7, after which all calculations are repeated.

A number of empirical studies have reported that this procedure is usually sufficient to stabilize the centroid 
locations for the majority of single-valued, closed curve outlines, usually within ten centroid-estimation 
iterations or less (Full and Ehrlich, 1982, Healy-Williams 1983, Pharr and Williams 1987, Healy-Williams et 
al. 1997). For those outlines whose centroid does not converge using the Evans Method, Full and Ehrlich 
offered a ‘Revised Evans Method’ which locates the new estimate of the harmonic spectrum centroid as the 
point mid-way between initial and (old) harmonic spectrum centroids. In terms of calculations, the Revised 
Evans Method can be implemented as follows. 

  x̂h = xh − 0.5xi (23.8)

  ŷh = yh − 0.5yi (23.9)

These authors claim that the Revised Evans Method can find stable centroids for approximately half of the 
single-valued outlines whose centroids failed to converge under the Evans Method (see Fig. 4). Still, a rump 
of outlines is left whose centroids fail to converge under either method.

Inspection of Figure 4 also suggests some rough guidelines that could be useful for determining whether an 
outline is likely to run afoul of the centroid-estimation problem. Based on this analysis, as well as my own 
experience, outlines composed of two or more unequal lobes (e.g., Globorotalia truncatulinoides, 
Goborotaloides hexagona) are often problematic. This is because the number of radius vectors falling into 
each of the two lobes can differ with the local size differential between the lobes often accentuating the effect 
of that difference. In these cases the centroid estimate often settles into a quasi-stable oscillatory pattern 
outside the tolerance envelope. Somewhat counter-intuitively three-lobed (e.g., Candeina nitida) or four-
lobed (e.g., Goborotalia theyeri) outlines don’t seem to suffer from centroid instability problems to anywhere 
near as great an extent as two-lobed and some multi-lobed forms. Also, based on my experience, the 
Revised Evans Method does indeed turn in a better performance in finding a stable centroid than the 
standard Evans Method, especially if relatively small numbers of harmonic amplitudes are being used to 
characterize the shape.

What difference does it make to a radial Fourier analysis if you don’t get the centroid right? Figure 5 shows 
the result of using the initial and tolerance envelope-adjusted centroid for Globorotalia truncatulinoides to 
calculate the harmonic amplitude spectrum.
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Full and Ehrlich (1982) provide a theoretical discussion of the effect centroid repositioning has on calculation 
of the radial Fourier harmonic spectrum. For the purpose of this discussion it is sufficient to point out the 
magnitude and non-linearity of the deviations in the harmonic amplitude spectrum, Since these amplitudes 
represent the independent ‘characters’ used by Fourier analysis to summarize and model shape variation, 
instabilities on the order of 10 percent in the values of these parameters — due entirely to geometric 
inconsistencies in centroid placement — should be avoided wherever possible. 

In addition to this issue of instability of the harmonic spectrum, one must also consider the fact that it is 
impossible to obtain centroid convergence for some outlines. When this occurs two options present 
themselves. Either the unstable outline must the eliminated from the dataset, or some manner of 
representing the geometry of the objects’ outlines that does not require location of each outline’s center must 
be employed. Fortunately, a number of strategies have been developed to describe outline shape variation 
without having to find the outline’s center, not only for case of pathological single-valued outlines, but 
additionally for the far more common situation in which the objects under consideration (or some subset 
thereof) are characterized by multi-valued outlines. It is to these more generalized shape-characterization 
approaches that we will now turn our attention.

Oddly enough, the oldest of these procedures involves a form of image processing that strikes many data-
analysts as rather extreme. For those objects or images in which one axis is markedly longer than the other 
giving rise to multiple-value outline issues as a result of pathological variation in the outline in regions of the 
form remote from the centre, it is often possible to solve the problem by slicing the image into two halves 
along the long axis and pivoting one of the halves so that its x-pixel coordinate values are reversed (Fig. 6). 
This has the effect of ‘unfolding’ the outline along the specimen’s long axis, and in so doing transforming the 
closed outline curve into a periodic waveform. Such periodic data are exactly the sort that Fourier analysis 
was developed to analyse originally. Accordingly, analysis of these wave-form data proceeds in a straight-
forward manner. The curve is digitized at equally-spaced intervals at a resolution that corresponds to twice 
the number of Fourier terms desired in the harmonic spectrum and the locations of these points along the y-
axis (= equivalents to the lengths of the radius vectors) recorded.

Figure 5. Harmonic amplitude spectra for Globorotalia truncatulinoides using the raw outline 
centroid (A) and the Revised Evans Method adjusted outline centroid. Although the spectra for 
these two analysis may  appear superficially  similar. Calculation of  the percentage difference of 
the harmonic amplitude values (C) shows that the shift in centroid location had both a significant 
and a highly  unpredictable effect of  the Fourier amplitude values,  with three harmonics exhibiting 
a greater then 10% change.
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Revising the notation we developed for the radial Fourier series calculations, we can analyse the curve 
presented in the lower portion of Figure 6 using the following (standard-form) Fourier series equations.

yj = r + aj cos j ⋅ β( ) + bj sin j ⋅ β( )⎡⎣ ⎤⎦
j=1

k

∑ (23.10)

Where:

r = length of a sampled (radius) vector along the y-axis
β  = angle of sampled vector in radians

r = average of all sampled (radius) vectors
j = Fourier harmonic number

k = total number of harmonics in Fourier series
aj = amplitude of the cosine term for the jth harmonic

bj = amplitude of the sine term for the jth harmonic

The amplitudes of the sine and cosine terms for equation 23.10 can be calculated using the following 
expressions.

Figure 6. Transformation of  the boundary  outline curve characterizing the fossil gastropod Sassia 
to a periodic waveform by  slicing the image in half  along the specimen’s long axis and pivoting or 
reflecting the lower (= left) half  at  the position of  the proloculus such that the outline forms a 
continuous, single-valued curve. See text for discussion.
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aj =
2
n

ri cos( j ⋅ βi )
i=1

n

∑

bj =
2
n

ri sin( j ⋅ βi )
i=1

n

∑
(23.11)

Where:

n = total number of sampled points along empirical curve
ri = distance between ith point and y-axis

j = Fourier harmonic number

βi  = angle of the ith radius vector in radians

Finally, the values of the amplitude and phase angles for each terms in the harmonic spectrum can be 
calculated using these standard expressions (equations 23.3 and 23.4_.

The harmonic spectrum for the first 15 terms of the Sassia Fourier series calculated on the basis of the 
waveform curve shown in Figure 6. A comparison of original and reconstructed outlines based on these 15 
harmonics, are shown as figures 7 and 8.

Figure 7. First 15 amplitude (cj) values in the harmonic spectrum of  the 
Sassia processed outline. Note logarithmic scale indicating that the 
overwhelmingly  predominant shape component is that of  a single 
sinusoidal waveform of length 1.0. See text for discussion.
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Although we’re still at the beginning of our discussion of outline-based data analysis methods, I hope you 
can already appreciate the power of techniques such a Fourier analysis for describing, quantifying, and 
modelling organic forms in a way that has meaning in a wide range of biological and systematic contexts. 
Use of these methods has been somewhat eclipsed by the understandable enthusiasm with which landmark-
based approaches to shape analysis were embraced by the morphometric community, aided and abetted by 
an inflexible — almost ideological — stance on Fourier analysis taken by several early proponents of 
geometric morphometrics. Over the next several essays we’ll work our way through a set of increasingly 
more sophisticated and generalized approaches to outline analysis until finally arriving a true syntheses 
between these two (supposedly) separate approaches to form/shape characterization.

In terms of software, virtually all higher-level statistical data analysis packages for personal computers 
implement one of more Fourier analysis routine. While discrete-form, radial Fourier analysis is rarely included 
in these packages, a little work understanding what their Fourier routines are designed to do usually results 
in the identification of a procedure or modification of the data format that should allow you to implement 
Fourier analysis yourself. Unfortunately, the problems inherent in the centroid stabilisation issue are unique 
to radial Fourier analysis and so are not covered by any pre-programmed package with which I am familiar. 
Regardless, it’s an easy matter to program a simple Excel spreadsheet routine that will allow you to check 
radius vector datasets to determine whether any of your specimens have a problem with unstable centroid 
location (see the Palaeo-Math 101 spreadsheet). This having been said, the fact that so few data analysts 
make use of landmark points that lie at or close to the forms central region has always struck me as odd. If 
such a landmark is available not only is the centroid stability issue easily and elegantly avoided, the 
biological interpretability of the shape analysis as a whole is often improved dramatically.

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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Figure 8. Original (red) and reconstructed (cyan) Sassia outline curves calculated 
based on a 15 harmonic Fourier amplitude and phase angle spectrum.
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1

9

http://www.palass.org/modules.php?name=palaeo_math&page=1
http://www.palass.org/modules.php?name=palaeo_math&page=1

