
Palaeo-Math 101
Shape Theory

Now that we’ve come to grips with Procrustes superposition we’re in a position to understand 
what shapes really are and how they are distributed in a geometric space. From there the 
problems associated with analyzing shapes with traditional, distance-based variables will be 
obvious, as will the manner in which shapes should be analyzed. This material all falls under the 
general heading of ‘shape theory’ which is part of the mathematical field of topology. Even 
mathematicians find topology an arcane, complex and difficult subject. So, you’ll be relieved to 
learn we’re not going to discuss in detail. But I will need to introduce you to some basic 
topological concepts in the context of the discussion.

Let’s begin the discussion with a simple example of the standard approach to the description of 
shape. Consider the set of triangles shown in Figure 1.

The standard distance-based variables used to describe triangles are basal width and apex 
height.1  Note these distances make a clear distinction between the apex landmark and basal 
landmarks, with the latter able to be further subdivided into right and left locations. Accordingly, 
these variables could be calculated for any set of three landmarks used to portray the relative 
positions of structures on a fossil body. Indeed, this triangle measurement system assumes that 
each landmark can be defined uniquely within its set. 

Once the landmarks have been located it is a trivial task to place each shape in its correct 
position relative to others in the space formed by these two variable axes. This is precisely the 
sort of shape space we used in our discussions of regression and multivariate data analysis. But 
is a space so defined fully adequate to express similarities and differences among these 
objects?

The first hint that this might not be the case comes through inspection of the diagonal of triangle 
shapes from lower left to upper right. These are all  equilateral triangles (= all sides of equal 
length) and so have the same shape. The difference between the triangles located along this 
diagonal  is one of size, not shape. Now consider the other diagonal  of shapes, from upper left to 
lower right. All three triangles along this diagonal differ in shape. But whereas the upper left and 
lower right forms are identical  in size, both are smaller than the middle triangle. Thus, size and 
shape are complexly confounded within this distance-based form space. The final  complication, 
however, comes with the realization that this space is unable to describe triangles uniquely. 
For the example shown in Figure 1 I chose to draw isosceles triangles in the space. I could have 
chosen any type of triangle. Figure 2 shows the same plot for right triangles that verge either to 
the left or the right. Of course, right triangles still have a basal  width and an apex height. We can 
use the same variables to describe them. But note that when we do both sets of right triangles 
plot in exactly the same positions as the set of isosceles triangles in Figure 1. 

1 McGhee (1999) has described this space as a theoretical morphospace of hypothetical triangular forms.

Figure 1. Nine triangles with positions plotted in a distance-based 
morphometric space.



This simple experiment suggests the geometric space formed by these two distance variables is 
anything but simple and straightforward to interpret for morphological data. Size and shape are 
confounded in complex ways and individual positions within the space represent large 
(effectively infinite) families of possible shapes (in this case triangles), each of which differs from 
the others in shape, size, or both. Such variables may be able to be used to test simple 
hypotheses involving shapes whose range of variation is limited (e.g., out example trilobite 
data). Even in these cases though, the inherent geometric ambiguity of the space formed by 
such variables should always be kept in mind. 

If all  this complexity applies to the analysis of two distance variables, imagine the problems 
associated with both assessing and keeping track of the additional complexities that result from 
the description of shapes using more than two distance variables! As we have already seen, 
patterns of variation in such data can be assessed using powerful  techniques such as PCA and 
PCoord. But use of these methods does not improve the power of distance variables 
themselves to describe shapes adequately. If anything, the correct geometric  interpretation of 
multivariate ordination spaces based on inherently ambiguous distance variables is even more 
complex than this simple two-variable example for any but the most well-behaved datasets.

What to do? Triangles are simple, two-dimensional figures. There must be a geometric  space in 
which the shape of any triangle can be located uniquely. What we need to do is find this space, 
develop some insight into what this space looks like, and develop tools that will allow us to use 
this space to make accurate comparisons between shapes. Let’s try to use the Procrustes tool 
we developed last time on these triangle data to get our heads around what’s going on.

Recall  that, under the Procrustes approach, shape is that aspect of geometry left over after the 
factors of form attributable to (1) position, (2) scaling, and (3) rotation have all been removed 
from data consisting of the coordinate locations of comparable landmarks. If we take the set of 
x,y coordinates for the 27 triangles shown in figures 1 and 2 and calculate their Procrustes 
superposition on the sample mean shape, the resultant plot of superposed coordinate values 
looks like Figure 3.
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Figure 2. Plot of  right triangles with basal width and apex height dimensions equal to those of  the 
isosceles triangles shown in Fig. 1. Note that  these triangles, which are clearly  different from each 
other and from the previous set of  isosceles triangles, plot  in exactly  the same positions within the 
ordination space formed by these two distance variables.



The symmetry of this shape-coordinate plot may come as a surprise. Remember, generalized 
Procrustes superposition tries to minimize the deviation between a target and a reference form 
(= the mean shape) at all corresponding landmark locations across the entire form. Sometimes 
this results in odd-looking rotations of the datasets. But Procrustes superposition has the distinct 
advantage of minimising shape differences globally. 

Table 1. Eigenvalue results of triangle shape analysis.Table 1. Eigenvalue results of triangle shape analysis.Table 1. Eigenvalue results of triangle shape analysis.Table 1. Eigenvalue results of triangle shape analysis.

Component Eigenvalue Shape Variance (%) Cum. Shape Variance (%)

1 0.058 49.88 49.88

2 0.057 48.64 98.52

3 0.002 1.48 100.00

Once these data have been matched for shape variation we can obtain a sense of their linear 
ordination by performing a standard PCA analysis of the superposed coordinate values. Table 1 
provides information about the amount of shape variation that exists in this superposed shape-
coordinate dataset. Despite the fact that six variables were used in the analysis, there are only 
three non-zero eigenvalues. This happens because the Procrustes standardization for position, 
size, and rotation removes three components of shape variation from a dataset of landmark 
points described by two Euclidean dimensions. With respect to the remaining axes PC-1 and 
PC-2 subsume subequal amounts of shape variation with a small remainder being represented 
on PC-3. Here it is important to emphasize that the three-dimensional representation of the 
triangle shape space is not a mere by-product of this dataset. Three non-zero eigenvectors 
would be returned no matter how many triangles were included in the dataset or what their 
shapes were, so long as they are represented by two-dimensional (x,y) coordinate data 
matched using the Procrustes method. 

Since we have defined shape as that subset of the observed variation left over after 
standardization for position, size, and rotation, this means that the characteristic  shape space 
for any form represented by three landmarks is three-dimensional. By using appropriate 
software we can graphically represent the complete mathematical shape space of triangles. Of 
course, our small  dataset of 27 isosceles and right-triangles is but a small subset of all possible 
triangles. Nevertheless, inspection of this small region of the overall triangle shape space (Fig. 
4) yields important insights.

There’s much to discuss with relation to this graph. First, notice that, unlike the distance-based 
PC space shown in figures 1 and 2, the Procrustes shape space has a unique coordinate 
location for all three sets of triangles. This means the Procrustes-referenced representation of 
shape relations is complete. In fact, it’s more complete it probably appears at first glance. Count 
the number of points in each colour-coded triangle set. That’s odd! There are only seven points 
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Figure 3. Procrustes superposed shape coordinates for the 
triangle datasets shown in figs 1 and 2. Color codes as in those 
figures.



in each set. Yet, in figures 1 and 2 there are nine triangles. What happened to the extra two per 
set?

Recall  that in each set the upward-trending diagonal  (lower left - upper right) contained forms 
that differed in size, but not in shape. These forms plotted in different places in the distance-
based space because that (traditional) space confounds size and shape relations. Not so the 
Procrustes space. The fourth point in each series is a coordinate location where three shapes 
plot. This represents an internal  check on the fidelity of the Procrustes shape space. In the 
distance-based PCA space, shapes that were identical  plotted in different locations. In the 
Procrustes PCA space, these same shapes plot at the same location.

But does the overall  picture of shape similarity relations shown in Figure 4 make sense? The 
triangles in figures 1 and 2 can be subdivided by the upward trending diagonal  of identical 
shapes into two groups. Triangles that plot below the diagonal are wide and low. Those plotting 
above the diagonal are tall  and narrow. Within these subsets the shapes occupying the upper 
left and lower right corners are more extreme than the two closer to the diagonal. Therefore, we 
should expect these extreme shapes to represent the ends of each sequence in Figure 4, the 
identical shapes along the diagonal to represent the middle of each sequence, and the 
intermediate tall-narrow and short-wide shapes to be located in between, on either side of the 
group-specific mean shapes. This is precisely the ordering of shapes seen in Figure 4. 

In terms of inter-group relations, the tall, narrow end-member shapes in each sequence are 
grouped close together at the top of the diagram because it is possible to bring their landmark 
locations into close alignment. This correspondence is impossible to achieve with the shorter, 
broader forms. Therefore, not only is the Procrustes-based shape space portraying shape 
similarities accurately, it’s also portraying shape differences in a manner that agrees with what 
would be a taxonomist’s geometric intuition.

The advantages of using the Procrustes alignment as a basis for shape comparison should be 
clear by now. But there’s more. Perhaps the most intriguing aspect of the Procrustes shape 
space is the curvature in the shape sequences that’s plainly visible when all three PCA axes are 
plotted together (Fig. 4, right). It’s almost as though the shapes are lying on the surface of some 
invisible, underlying structure. As it turns out, that’s exactly the case. 

We can better assess the shape of this invisible structure by increasing the sample size and 
diversity of triangular shapes and repeating the analysis. Figure 5 shows a selection of a 
dataset of 500 random triangles that were subjected to Procrustes alignment and PCA analysis. 
Figure 6 details the distribution of these 500 triangles in the space formed by the three PCA 
axes.

4

Figure 4. Portion of  the overall triangle shape space subsumed by  the triangles shown in figs 1 
and 2.  The plane through the first to principal components of  shape variation (left). Perspective 
diagram of  variation along all three shape variation axes (right). Color codes and shape numbers 
as in previous figures. See text for discussion.



Because Procrustes shape data are expressed as deviations from a mean shape, the 
Procrustes PCA space is centred on the mean shape. Also, because dataset is composed of 
random triangle shapes, the distribution of shapes is roughly circular about the mean shape. 
However, as you can see from the three-dimensional plot in Figure 6, all  the triangle shapes are 
distributed on the surface of what appears to be a hemispherical  form. Regardless of the final 
geometry of this surface, it would appear Procrustes shape distributions exist in a curved 
mathematical space.

As it turns out, the full form space for triangles is a perfect sphere. Figure 7 is the canonical 
representation of this space which, for reasons that will become clear momentarily, 
morphometricians call the pre-shape space.
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Figure 6. Procrustes PCA ordination of 500 random triangles. See text for discussion.

Figure 5. A selection of random triangles used in the exploration of the triangle shape 
space.



Figure 7 is a two-dimensional  map of the three-dimensional triangle pre-shape sphere. Like all 
spheres, the orientation of the grid system is arbitrary. In this diagram an equilateral triangle, 
apex up, has been chosen as one pole and the same triangle, apex down as the other pole. The 
green circle is the sphere’s equator and the lower hemisphere has been folded up to form a ring 
around the upper hemisphere. Triangles whose apices are located above the baseline are 
located in the upper hemisphere, those whose apices are located below the baseline in the 
lower hemisphere. In this orientation the equator represents the set of colinear triangles in which 
all three vertices lie on the same line.

There are several important things to note about the pre-shape sphere. First, all  possible 
triangles can be mapped to a unique coordinate location on the surface of the sphere. Another 
way of saying this is that each coordinate location on the pre-shape sphere represents a unique 
configuration of the three landmarks that make up a triangle. Thus, this sphere’s surface 
represents a complete representation of the geometry of triangular shape. 

What about size? In this representation size is denoted by the radius of the pre-shape sphere. 
Physically large triangles plot on the surfaces of spheres with large radii, small triangles on 
spheres with small radii. Recall that, by convention, Procrustes alignment rigidly expands or 
shrinks all  shapes until they have unit centroid size. This operation projects the original shapes
—that exist on pre-shape spheres of varying sizes—to their corresponding positions on the unit-
sized sphere, thus facilitating direct shape comparison.

What about rotation? Recall that our definition of shape specifically excludes configurations of 
points that are identical to each other, except for the fact that one has been rotated rigidly 
relative to the other about their mutual centroid. The pre-shape space is considered ‘pre-shape’ 
because it places some forms that differ only by rotation at different coordinate locations on the 
sphere’s surface. This can be appreciated most easily by noting that the equilateral triangles 
occupying the two polar positions in Figure 7 are identical except for a 180° rotational 
difference. In fact, the symmetry between the lower and upper hemispheres of the pre-shape 
sphere arises because of 180° rotational differences (= reflection). However, by correcting for 
such rotational differences between shapes, the lower hemisphere of the pre-shape space can 
be mapped onto or merged with the upper hemisphere (or vice versa) thereby achieving a fully 
realized shape space in which the effects of position, scale, and reflection-rotation have all  been 
removed. Geometrically this transforms the pre-shape sphere into a shape hemisphere. It is this 
shape hemisphere (also termed the shape half-space) that is being depicted in Figure 6.

Actual  shapes that can be characterized by any set of three landmarks represent a realized 
subset of all possible shapes that map to a particular region on the triangle shape half-space. 
This region may be large or small  depending on the amount of shape variation present in the 
sample. Shapes may be distributed uniformly through the region or arranged in density clusters, 
again depending on the character of shape variation present in the sample. All  the intuitive 
conceptual conventions we’ve grown accustomed to when thinking about shapes and shape 
analysis, along with the concepts we use to describe shape variation (e.g., shapes that are 
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Figure 7. The pre-shape space of triangular forms. 
Redrawn from Rohlf (http://life.bio.sunysb.edu/morph).

http://life.bio.sunysb.edu/morph
http://life.bio.sunysb.edu/morph


similar are ‘close to’ one another, those that are different are ‘distant from’ one another) still 
apply. But now we understand why in a precise mathematical sense. As a result, this knowledge 
of what size and shape really are can be used to inform our choice of data-analysis methods 
and our interpretations of the results of various mathematical operations. 

Best of all, these conventions don’t just apply to shapes represented by three landmarks. It’s 
convenient to work with the triangle shape space because all triangular shapes can be 
represented in three uncorrelated dimensions we can easily ‘see’ in our mind’s eye and 
represent on a flat piece of paper or on a computer screen using various graphic  conventions. 
But all  shapes that can be described by sets of landmarks have their own shape spaces that 
behave in precisely the same way. 

Morphometricians and topologists call the mathematical  surfaces on which shapes reside 
manifolds, which are mathematical spaces that, on a small  enough scale resemble a Euclidean 
space of a certain dimension. The triangle pre-shape space and the shape hemisphere are both 
examples of two-dimensional  manifolds. The problem with the more complicated manifolds on 
which shapes defined by more than three landmarks reside is that most of us find it difficult to 
think in more than three dimensions and our graphic tools for depicting higher dimensional 
spaces are very primitive. Nevertheless, we can use the triangle shape manifold to gain insight 
in to the practicalities and complications of truly geometric shape analysis.

At this point I need to make a point about why shape data are different from other sets of data 
so as not to give you the impression that you can use Procrustes PCA to analyse anything and 
everything. Recall that PCA (and PCoord, and FA, and MDS) is a generalized data-analysis 
procedure. It (and they) can be used to analyse data of any sort. The reason why standard 
distance-based data are not ideally suited for shape analysis is that, in addition to relations 
among variables (e.g., covariance, correlation), shape data have an inherent geometry that 
needs to be respected at the design and computational  levels of the analysis. Distance data are 
simply magnitudes. By themselves they preserve no aspect of the fundamental  geometry of the 
shape. This places constraints on the analysis and interpretation of shape data that simply 
doesn’t exist for other variable types. 

In a sense standardizing generalized data corrects for the same sorts of factors as the 
Procrustes standardization for position and size. In some cases it makes sense to standardize 
data. In others it doesn’t make sense to do so. It almost always makes sense to undertake such 
standardizations for shape data. But there is no routinely invoked equivalent for rotation to a 
common reference in non-shape data, The bottom line is, the inherent geometry of shape data 
means they are different in ways that are not handled well by distance-based variables, but that 
can be handled by the same sorts of data-analysis procedures we have used throughout our 
discussion of linear regression and multivariate analysis provided these shapes are represented 
by landmarks whose positions relative to one another have been rigidly matched using 
generalized Procrustes superposition (or an equivalent matching technique).

Let’s end this first exploration of shape theory by discussing a few of the complications that 
follow from shapes existing mathematically on a curved manifold. If the shape space is curved 
this means that, strictly speaking, it is inappropriate to use tools of linear algebra (e.g., 
covariances, eigenanalysis) to explore and summarize relations among shapes. The basic 
problem is illustrated in Figure 8.

Since hypotheses about shapes typically turn on the issue of shape similarity, and since shape 
similarity is quantified by the distance between two shapes or between a shape and the 
reference shape in the context of the shape space, it is important to calculate the distances, 
between shapes accurately. The distances we’re interested in are the distances of the shortest 
curves between two configurations’ coordinate positions along the shape manifold. However, 
the easiest distances to calculate are the linear distances between points on the manifold. The 
full, curved distance is termed the Procrustes distance (ρ in Fig. 8) and the linear distance the 
partial Procrustes distance (Dρ in Fig. 8). As you might imagine, the equations used for 
calculating the Procrustes distance are formidable, especially when the shape space is high-
dimensional. However, we’ve all  seen this problem before and are aware of readily available 
solution.
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An important hint at the solution is provided in Figure 7. This is a map of the three-dimensional 
triangle pre-shape space that’s been flattened out to occupy two dimensions. Note that the 
method employed to flatten the three-dimensional space has left the points in the lower 
hemisphere wildly distorted, but points in the upper hemisphere at positions close to their true 
three-dimensional positions.

I’ve accentuated the difference between ρ and Dρ in Figure 8 by placing the green point (A) a 
good distance from the reference shape (red point). If, in your mind’s eye, you move the green 
point along the curve toward the red point a difference between ρ and Dρ remains, but becomes 
far less marked. Therefore, if our sample of shapes are more-or-less similar to start with, 
substituting Dρ for ρ should not introduce a large error into estimates, plots, and summaries of 
shape similarity. 

Here it is appropriate to note that landmark datasets are often biased toward overall shape 
similarity insofar as it is comparatively rare to find sets of organisms with radically different 
morphologies that can be represented adequately by sets of landmarks. The simple fact that the 
same set of landmarks must be able to be found on all  specimens in the sample goes a long 
way toward ensuring the the range of shape differences included in any landmark-based 
analysis is relatively small. For those who like to check assumptions, tests are available to 
determine how much distortion is likely to be present in Procrustes-based shape analysis. So, 
we can simplify our problem by taking advantage of linear approaches to data analysis, 
providing our sample doesn’t encompass too much shape variation.

This having been said, from a practical point-of-view the problem of distortion due to 
inappropriate selection of tangent-plane orientation is usually far more important than distortion 
due to the range of shape variation present in a sample. In previous discussions you may have 
wondered why it’s standard for Procrustes superposition to express shape variation as deviation 
from the mean shape. After all, we don’t usually express distance-based data as a deviation 
from the mean distance. Moreover, there are other reference forms that could conceivably be 
used as a reference for a set of shape data (e.g., either the juvenile or mature adult forms in an 
ontogenetic  study, a putative ancestral form in an evolutionary study, a holotypic form in a 
taxonomic study). What, if anything, is so darn special about the sample mean shape?

The answer to this question has to do not with some stylistic  chauvinism among geometric 
morphometricians, but with the fundamental geometry of the Procrustes shape space. If shape 
variation in a sample is moderate, it is possible to project shape configuration locations from 
their positions on the surface of the shape manifold to a linear plane where the well-developed, 
traditional, and familiar tools of linear algebra can be used to quantify, summarize, represent, 
and test shape distributions. But there are an infinite number of possible planes that could be 
used for this purpose. Which, from among this infinite set of tangent planes, is the best choice?
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Figure 8. Cross-section through the triangle shape space with the positions of  two shapes 
indicated. See text for discussion.



Figure 9 shows two possible tangent plane choices for a dataset composed of two groups, 
green and blue. In this hypothetical  example the shapes exhibited by the green and blue groups 
are quite distinct. The orientations of the two tangent planes are given by locating tangent points 
on the Procrustes shape hemisphere. Since each point on that surface corresponds to a 
configuration of landmark points, this is tantamount to specifying a reference shape. The red dot 
represents the position of the mean shape for the pooled sample. The yellow dot represents an 
alternative and arbitrary choice of reference shape. There are several  ways of performing the 
projection, which we’ll discuss in a moment. For now however, let’s assume we’re going to 
perform a simple, orthogonal or major axis projection to the tangent plane.

Once we’ve got a clear picture of what the choice of tangent planes entails for the analysis, the 
correct choice is equally clear. Selecting a point at the periphery of a shape distribution (the 
yellow point in Fig. 9) guarantees a relatively high level of distortion in the resultant shape 
ordination due to the curvature of the Procrustes shape space. The effect has been 
exaggerated in Figure 9 by placing the yellow dot well outside the limits of the observed 
sample’s shape variation. Nevertheless, and as I hope you can see from the diagram, the 
distortion will  be present for any reference shape choice drawn from the periphery (or beyond) 
of the shape distribution. 

Contrast this with the situation that results from selecting the mean shape (= red dot) as the 
basis for tangent-plane orientation. This is a position that is guaranteed to orient the tangent 
plane in a position that minimizes curved-space distortion for the sample. Distortion is present in 
projections to a tangent plane defined by the mean shape and will be greater for those points at 
the periphery (as opposed to the centre) of the shape distribution. Some degree of distortion is 
inevitable whenever a distribution that exists in a high-dimensional space is represented in 
spaces of lower dimensionality. But as you can see from Figure 9, the amount of distortion is 
much reduced. For this hypothetical  dataset the difference is that of being able to recognize and 
interpret the shape difference that characterize these groups or not.

The last shape-space issue we’ll discuss is the strategies available for making projections of 
points on the surface of the shape hemisphere to the tangent plane. Alternative approaches are 
summarized in Figure 10.

For completeness I’ve added a second potential shape manifold to this diagram, shown in 
Figure 10 as the dashed circle inscribed between the origin and reference shape in the 
Procrustes shape hemisphere. This is the Kendall shape space (or shape manifold), which is 
formed by relaxing the constraint that all  shapes should be adjusted to unit centroid size. As you 
can see on the diagram, whereas the Procrustes distance (ρ) can be estimated by partial 
Procrustes distance (Dρ), this is not the shortest distance between the reference shape and a 
configuration whose form is identical to that of the comparison shape. This shortest distance is 
represented by Df in Figure 10, which is termed the full Procrustes distance. The difference here 
is that the blue point (B) does not lie on the unit Procrustes shape manifold. Instead, it resides at 
a position along the same trajectory from the shape manifold’s origin, but internal  to its surface. 
This is a position in which the configuration’s shape is the same, but the size is slightly smaller. 

9

Figure 9. Cross-section through the triangle shape space with the positions of  two alternative 
tangent planes indicated. See text for discussion.



Application of this ‘relaxed size’ convention produces an alternative shape space that provides a 
better overall fit of configurations to the reference, but does so at the cost of continually varying 
the configuration’s size factor in a highly nonlinear manner. Once again, and as I hope you can 
appreciate from the diagram, for distributions of shapes that are all  fairly similar—the typical 
case in systematics in general—ρ, Dρ, and Df all converge on similar values. Accordingly, in 
such situations it’s usually acceptable to employ the more easily calculated partial Procrustes 
distance in representing shape ordinations.

Regardless of this complication over which space is most appropriate to use as a basis for 
shape comparison, there are two primary ways of projecting points from the shape space(s) to a 
tangent plane. The stereographic method projects shape configurations from the origin of the 
Procrustes shape hemisphere (and/or the polar position of the Kendall  shape space) through 
the positions of the geometrically homologous configurations on the surfaces of these two 
shape spaces to the tangent plane. In Figure 10 this projection is used to place point A-B. 

Note that the stereographic  method makes no distinction between the Procrustes shape 
manifold and Kendall  shape manifold. Both ways of representing shape project to identical 
positions on a tangent plane. This is a distinct advantage. The disadvantage of this approach is 
that the apparent distance between the reference and the projected point is always an 
overestimate of the true Procrustes distance (ρ), especially for configurations lying at some 
distance from the reference shape. Indeed, for forms that lie along the equator of the Procrustes 
shape manifold (= at the pole of the Kendall  shape space) no projection is possible as the 
distance is infinite. However, this is a rarely encountered situation. In the overwhelming majority 
of cases involving biological  shape analysis the estimate is accurate, through the systematic 
bias to overestimation is always present.

Alternatively projection to the tangent plane may be undertaken in an orthogonal (= major axis) 
mode using the orientation of the tangent plane as the basis for projection. In Figure 10 
orthogonal projections are used to place points A and B on the tangent plane. For this projection 
strategy the advantages and disadvantages are reversed from those of the stereographic  mode. 
Here, it makes a difference as to whether you choose to match shapes using the Procrustes or 
Kendall shape spaces. But in either case the projection underestimates the partial Procrustes 
distance (Dρ) or the full  Procrustes distance (Df) respectively, both of which also underestimate 
the Procrustes distance. As with the stereographic projection, the magnitude of the distortion 
increases for those configurations that differ markedly from the reference shape. But in no case 
does the projection lead to an infinite result. Overall, orthogonal  projections from the Procrustes 
shape manifold produce more accurate estimates of the Procrustes and partial Procrustes 
distances. Unsurprisingly, orthogonal projections from the Kendall  shape manifold produce less 
accurate estimates of the Procrustes and partial Procrustes distances, but better estimates of 
the full Procrustes distance.

If you’ve made it this far congratulations (and thank you). It might have seemed like a long, hard 
slog that had little to do with palaeontology per se. Please be assured that my purpose in this 
essay—and in this column—is not to turn you into mathematicians. Rather, it’s to explain how 
the tools of mathematics can make us all better palaeontologists and, if truth be told, to lower 
the level  of intimidation most palaeontologists feel toward mathematics. You don’t have to 
understand the intricacies of non-linear algebra to be able to design and execute a Procrustes 
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Figure 10. Cross-section through the triangle shape space with the geometry  of  three 
alternative tangent plane projection schemes indicated. See text for discussion.



shape analysis intelligently, provided you have a firm grasp of the fundamentals. Most 
importantly though, as Procrustes analysis is arguably the most powerful  tool in the quantitative 
form-analysis kit, and since the basic data of all  palaeontology constitutes form, the ability to 
conduct such analyses should, in my view, be part of every palaeontologist’s training. Besides, 
once you’ve got a proper guide. it’s not all that hard to understand.

As for software, I really haven’t covered anything in this column that is new in terms of 
procedures that require access to new software. Most of the algorithms and calculations have 
been described in previous columns. The triangle examples are included as part of the Palaeo-
Math 101-2 spreadsheet so you can see exactly how the figures I’ve used to illustrate this 
column were obtained. A full analysis of the raw data can also be performed using Jim Rohlf’s 
tpsRelw program, which is downloadable from his SUNY morphometrics web site (http://
life.bio.sunysb.edu/morph). I’ve written several  Mathematica routines that were used to perform 
all  the analyses presented herein. These are available free on request. The only procedures 
that haven’t been covered in algorithmic detail are the routines used for stereoscopic and 
orthogonal projection to a tangent plane. I need to develop a few additional  concepts before I 
explain how these projections can be accomplished. Accordingly, they will  be the subject of a 
future column.

Finally, references. There really aren’t that many descriptions of this material  that have been 
written to date for non-mathematical  audiences. A full mathematical treatment is provided by 
Mardia and Dryden (1989) and Dryden and Mardia (1998). The canonical conceptual  treatment 
of the concepts involved are covered by Bookstein (1991). A useful, though somewhat overly 
complex, introductory version of this material  can be found Zelditch et al. (2004). Finally, a short, 
but useful discussion is also included in the help section of Rohlf’s tpsRelw program.

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1
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