
PalaeoMath 101
Size & Shape Coordinates

In the last column I tried to show how the same information we had  captures previously using 
linear distances between landmarks could be captured, summarized, and used for ordination 
studies based on the coordinate positions of the landmarks themselves. Actually, because 
these coordinate positions are linked to a common reference—the origin of the coordinate 
system—any localized feature represented by a landmark is automatically located in both ab-
solute and relative senses to all other features described by landmarks. In other words, keep-
ing your data in the landmark mode of representation allows you to access all  contrasts be-
tween all landmark locations simultaneously.

One could, of course, ask ‘Why not simply measure all distances between all landmarks and 
use that as the basis for your analysis?’ Indeed, a morphometric approach exists—Euclidean 
Distance Matrix Analysis (EDMA, see Lele and Richtsmeier 1991) that employs precisely this 
strategy. There’s been quite bit of controversy about EDMA in the morphometric  literature and 
this isn’t the place to review those issues (perhaps I’ll, do that in a future column). But one 
classic and practical concern has to do with the geometries of completely specified meas-
urement networks. Figure 1 shows a completely specified distance network for a landmark set  
defined for the Calymene specimen from the trilobite dataset.

Obviously the coordinate-point representation is much more compact than the inter-landmark 
distance representation. The former requires only 30 variables for a 15-landmark set (the x 
and y coordinate values) whereas the latter requires 105 variables to capture the same infor-
mation. But aside from this, the coordinate-point representation is better in that much of the 
extra information specified by the complete distance network is redundant  (e.g., the distance 
from the tip of the pygidium to the most anterior glabellar landmark is much the same regard-
less of whether it’s being measured to the right or left sides). Also, unlike the coordinate-point 
data, the scalar values representing inter-landmark distances carry no geometric information 
about relative landmark placement. Knowing the distance from landmark 1 to landmark 2 is 
2.33 mm places landmark 2 somewhere along a circle centred at landmark 1 with a radius of 
2.33 mm, but does not indicate where landmark 2 is located on that circle. However, if land-
mark 1 is located at coordinate position (7.62 mm, 8.16 mm) and landmark 2 at position (9.86 
mm, 7.53 mm) the placement of these two points, and the morphological  features they repre-
sent, has been established precisely.

What we now want to do is develop some means of comparing sets of landmark points with 
one other that gives us maximum control over the factors responsible for form variation. 

Figure 1. Alternative approaches to the quantification of  shape using land-
marks. Right:  Digital image of  a Calymene specimen with the locations of  15 
landmarks superposed (scale bar = 7.87 mm). Centre: representation of  its 
form using positions of  landmark points in a Cartesian coordinate system. This 
representation specifies the relative locations of  all points exactly  and requires 
30 variables. Right: representation of  the same form using all linear distances 
between all landmarks. This representation requires 105 variables and con-
tains much measurement redundancy.
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There are four such factors: position, orientation, scale, and shape. In the last essay I showed 
you an easy way of gaining control over the positional and orientational  aspects of different 
landmark sets. In 1986 Fred Bookstein introduced a simple modification to these equations 
that allowed sets of landmarks to be brought into common alignment in terms of position, ori-
entation, and scale. It’s a little appreciated fact these days, but that 1986 article started the 
geometric morphometrics revolution.

To illustrate his method consider the trilobite pygidium (Fig. 2). The pygidium is a roughly tri-
angular structure whose gross shape, in most cases, can be estimated by specifying three 
landmarks, two at the lateral  maxima on either side of the axial lobe and a third at the distal 
terminus. This suits our illustrative purposes nicely as a triangle is the simplest geometric  fig-
ure to have a complete form; to have position, orientation, size, and a shape. Points have po-
sitions. Lines have positions, orientations, and sizes (lengths). But only triangles and more 
complex polygons have all four descriptive form features.

Table 1. Cartesian coordinates of triangles shown in Figure 2.
Vertex x-coordinate y-coordinate

1c 1.94 7.77
2c 4.98 7.47
3c 3.30 6.73

1d 1.63 3.65
2d 5.68 3.77
3d 3.53 1.97

Table 1 gives the coordinate positions of the two sets of triangle vertices shown in Figure 2. 
The tools we developed in the last column are sufficient to match these triangles along a 
user-selected axis or baseline. Bookstein (1986) developed the following equations that not 
only accomplish this operation in a more compact form, but that also adjust the sizes of the 
triangles via rigid scaling of a baseline to a unit value.

(15.1)

Figure 2. Landmarks used to define triangles that summarize the gross  
form of Calymeme and Dalamanities pygidia.
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In this equation the denominator of the ratios contains the landmarks that define the baseline. 
For our triangles the most reasonable baseline choice would be the chord joining landmarks 1 
and 2. Accordingly, we can use the equations in 15.1 to analyse the data in Table 1 without 
having to adjust the notation. Results of these calculations (see the Palaeo-math-101-2 
spreadsheet) are show in Figure 3.

The comparison illustrated in Figure 3 accords well with our intuition based on a traditional 
qualitative comparison of the pygidial  triangles in Figure 2. The Calymene pygidial  shape is 
shallower than that of the Dalamanites, at least for these specimens. But note also that we 
have now removed all variation between the triangles due to position, orientation, and size. 
What we are left with is a summary of variation due solely to shape differences. 

Naturally, variation also exists in the positions of the baseline landmarks (1 and 2). But be-
cause these landmarks serve as the basis of the standardization of position, orientation, and 
scale, all the shape-difference information in this comparison has been focused on the posi-
tional  difference in the single non-baseline landmark, landmark 3. This might strike some as 
arbitrary (what if you’re interested in knowing about patterns of variation at landmarks 1 and 
2?), but it does have the advantage of greatly simplifying an otherwise complex pattern of 
variation at three locations into a contrast between two points in space. For this simple sys-
tem the vector between the Calymene and Dalamanites positions for landmark 3 in the shape 
space quantifies how much the forms differ, the overall directions of the difference, and sug-
gests a simple procedure through which one shape can be transformed into the other.

The η values on each axis in Figure 3 represent new variables that have been produced for 
sets of landmarks once the effects of position, orientation, and scale have been removed. 
Since shape is what these variables express, they are termed ‘shape variables’. Perhaps the 
best way to think of them are transformations of the original coordinate values in which we’ve 
emphasized one aspect of the information present in those original  values (shape differences) 
by removing the effects of the other three. 

Because we’ve used a baseline between landmarks to correct for position, orientation and 
scaling, and because Bookstein (1986) developed this approach to shape-coordinate calcula-
tion, what we’ve calculated in the Palaeo-math-101-2 spreadsheet to this point and, drawn in 
Figure 3, are the Bookstein shape coordinates. If we had more than three landmarks in our 
system we’d still select a baseline and then use the equations in 15.1 to calculate the Book-
stein shape coordinates for all the non-baseline landmarks. Similarly, if we had more than a 
two pygidia in our sample we’d be able to plot—and so make comparisons between—a larger 
number of pygidia in the Bookstein shape-coordinate space. Figure 4 shows these shape co-
ordinates for all the images in our trilobite dataset that include pygidia.

Figure 3. Results of  correcting the triangular pygidial shapes shown in Figure 2 
for position, orientation and scaling using the baseline (Bookstein) shape 
coordinate method. Note all shape differences are subsumed in the position of 
the free (non-baseline) landmark. Color codes for genera as in Figure 2.



4

In this ordination the free coordinates form a trace up the center of the plot because, on the 
whole, trilobite pygidia are bilaterally symmetrical. Ptychoparia exhibits the most flattened py-
gidial shape in this sample, Trimerus, the deepest. Although the distribution in the shape 
space appears quasi-continuous, in places there is a suggestion that some marked gaps in 
the shape distribution may also be present. For example, a gap seems to be present between 
shallow pygidium of Ptychoparia and all  other genera, between a set of genera with deep py-
gidial shapes (Trimerus-Toxochasmops-Narroia) and all other genera, and between the inter-
mediate pygidial shape of Cybantyx and all other genera. Two more diverse groups of genera 
with moderately deep pygidia are also evident on this plot. If the gaps between these putative 
shape groups remained after additional sampling they could be used to more objectively and 
reproducibly assign these genera to pygidial shape categories, say for a phylogenetic analy-
sis (see MacLeod 2002 for further discussion of this approach to character-state recognition).

To this point we’ve ignored size variation in the context of shape coordinates. In previous col-
umns dealing with traditional  multivariate analysis we’ve seen that size and shape are often 
interwoven in complex ways. The mathematical definition of shape is ‘the factor that remains 
after position, orientation, and scaling factors have been removed.’ But that definition begs 
the question “what is variation due to scaling?”.

As was noted in the previous column on allometry and PCA (Newsletter 59), the best concep-
tual definition of size change is an increase or decrease in the magnitude of linear distances 
between features (= landmarks) that occurs at the same rate in all regions of the form. Shape 
change, then, is a localized increase or decrease in the magnitude of linear distances be-
tween features. But regardless of how it’s defined conceptually, there are at present, and will 
likely remain, a multiplicity of operational  ways ‘size’ can be measured or represented (e.g., 
volumes, weights, distances, combinations of distances). In terms of Bookstein shape coordi-
nates (equations 15.1), the relevant scaling factor is provided by the absolute length of the 
baseline. Curiously, despite the clear implications of his shape-coordinate method the specifi-
cation of size, Bookstein (1986) proposed a radically different morphometric  size index: cen-
troid size (S). 

Since 1986 centroid size has been defined in several  different ways. Bookstein originally de-
scribed it as “the sum of all  squared distances between landmarks in pairs” (p. 190). This 
value was deemed statistically equivalent to “the sum of distances from each landmark to 
their joint centroid, each distance weighted by its own sample mean.’ (p. 190). Later in that 
same article Bookstein introduced the concept of taking the square root of S in order to linear-
ize the index and place it in the same units as the original coordinate values. Later authors 
(e.g., Zelditch et al. 2004) have tended to define ‘S’ as the square root of the sum of squared 
distances of all landmarks from their joint centroid, despite the inevitable confusion this 
causes with the older literature. To avoid that pitfall I’ll  use the symbol S’ for the non-weighted 

Figure 4. Ordination of  the pygidial shape variation in 14 trilobite genera 
using Bookstein shape coordinates. See text for discussion.
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sum of squared distances from the joint centroid and ‘root centroid size’ (RCS) to describe the 
square root of this convenient morphometric  size index. The RCS corresponds to the follow-
ing equation.

€ 

RCS = xi − x ( )2 + yi − y ( )2
i=1

n

∑ (15.2)

In this equation n corresponds to the number of landmarks.

The Palaeo-math-101-2 spreadsheet calculates all  these size indices for the trilobite pygidial 
dataset shown in Figure 4 to demonstrate they are all very highly correlated with one another, 
This gives empirical support to the assertion (made explicitly in Bookstein 1986, but not dis-
cussed at all  in Zelditch et al. 2006) that the concept behind each is the same. All three size 
indices proposed for use in geometric  morphometrics represent size as the sum of distances 
between landmark points, thus operationalizing the network shown in Figure 1 as an appro-
priate procedure for estimating size (but not shape). 

Both Bookstein (1986) and Zelditch et al. (2006) claim these size measures are uncorrelated 
with shape. This is correct, but perhaps in more subtle manner than it first appears. Zelditch 
et al. (2006) in particular confuses matters for many readers by couching their discussion of 
centroid size in terms of isometric  shape change. The fact is the centroid size concept—and 
the centroid size computation—is entirely agnostic  when it comes to the question of isometric 
or allometric shape change. There is no way to tell from the outset whether landmarks used 
as the basis for the centroid size computation experience little, a moderate amount, or a great 
deal  of allometric change over a sample. Consequently, centroid size is not an inherently 
isometric size index (and so uncorrelated with shape change for that reason). Rather, what 
Bookstein (1986) means when he speaks of centroid size being uncorrelated with shape is 
simply that any shape described by the same number of landmarks may be compared in 
terms of its size using the centroid size index. In this sense the ‘shape’ of the form being 
quantified is, in a sense, irrelevant from the point- of-view of centroid size.

Centroid size is clearly a better size index than any index constructed from an arbitrary subset 
of landmarks collected on a form. As shown in the Palaeo-math-101-2 spreadsheet, the RCS 
index is conceptually synonymous with (but of course not computationally equivalent to) 
coordinate-based or distance-based size indices that employ all landmarks to obtain estimate. 
This is what distinguishes the RCS from the size estimates we employed in the previous col-
umns on regression and multivariate analyses. In those cases we are always dealing with an 
arbitrarily selected subset of all possible distances between landmark points. the RCS differs 
from these in that all  information from all regions of the form is employed in the size estimate. 
But does this mean centroid size always corresponds to our intuitive notion of what size rep-
resents?

Because centroid size is a obtained via summation, it represents a theoretical range of values 
that is not only unbounded, but guaranteed to increase if the number of landmarks used to 
estimate it increases.1  This leads to some awkwardness and plainly counterintuitive results. 
Take, for example, the three identical triangles shown in Figure 5. 

1 I thank Jonathan Krieger for pointing this fact out to me originally and hope he will publish a more 
complete review of centroid size than I have had space to do here.
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In one landmarks have been placed and the three vertices. In another, additional, constructed 
landmarks have been placed at the midpoints of the sides. And in the last these half-side 
chords have been further subdivided into equal-lengths segments. If the RSC (or S, or S’) is 
calculated for these three landmark sets the size values will differ, substantially. Note neither 
the total lengths of the sides have changed, nor the area of the triangle. Moreover, the magni-
tude of the differences between size estimates will  depend entirely on how many landmarks 
are used to represent the form and on the placement of the landmarks relative to the centroid, 
even for forms that have exactly the same dimensions. Now, provided the landmark points 
chosen are good landmarks (= unambiguously locatable positions on the forms that are 
strictly comparable to one another in a biological sense), and provided you are comfortable 
with the idea of using these, and only these positions, to estimate body size, there is no prob-
lem. But if your landmarks are less precisely determined (= represent approximations of the 
positions of questionably comparable features), or if the idea of using only a few landmarks to 
determine renders the estimate of body size more a caricature than an observation, they may 
well be a problem. In these cases, the independence of centroid size from shape is not all 
that clear cut. To illustrate this using the opposite of Figure 5. consider the comparisons 
shown in Figure 6.

These idiosyncrasies of the centroid size index should be kept in mind when designing land-
mark sets that will be used to estimate size and shape in morphometric studies and when 
comparing RCS values for different landmark sets. Suffice it to say, there is no ‘prefect’ size 
index and the decision as to which of the many size indices is most appropriate for a particu-
lar study will, in most cases, depend on the details of the forms being investigated and the 
purposes of the study. 

Turning now to a consideration of the relation between size and shape for the trilobite pygidial 
data we can test the allometry model  by performing a multiple linear regression of the two 
shape variables (η1, η2) on RSC (see the Palaeo-math-101 column in Newsletter 58 for a dis-
cussion of multiple linear regression). The 3D scatter plot for this regression is shown in Fig-
ure 7 and the regression ANOVA in Table 2.

Figure 5.  Unbounded nature of  the RCS index. The two traingles have exactly  the 
same dimensions. However, when the RSC index is used to estimate their size this 
value is tied the number of  landmarks used to represent the form. Green = landmarks, 
White = centroid. Red = constructed landmarks.

Figure 6. Forms that would be represented as having the same size as 
measured by a three-landmark centroid size estimate.
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Table 2. ANOVA results for multiple linear regression of shape coordi-
nates on size.
Source DoF SSQ Mean Squares F

Total 13 345.676

Regression 2 141.269 70.634
3.801

Error 11 204.407 18.582

Looking up the critical  value of the F statistic we find the regression is just slightly non-
significant at the traditional 95 percent confidence level (α = 0.056), but close enough to be 
interesting. Inspection of further statistics for this regression indicates that η1 does not exhibit 
a significant partial regression slope (t = -0.747), but η2 does (t = 2.702). The fact that there is 
a distinction between the two variables is obvious from Figure 4, but still  it’s nice to see the 
significance of η2 confirmed.

Lastly we can use Bookstein shape coordinates to obtain an picture of relations between taxa 
in a form space (size + shape) or in a size-free shape space. For this analysis let’s go back to 
an analysis of the trilobite cranidia, using the landmarks for that structure shown in Figure 1. 
To construct the form matrix we would simply select a baseline (e,g., anterior and posterior 
glabellar mid-line landmarks), calculate the shape coordinates for all  non-baseline landmarks, 
decide whether we wanted to include information about cranidial left-right asymmetry (if not 
we should either use only landmarks from the right or left sizes, or possibly reflect one side 
onto the other and then average the corresponding landmarks), and submit the resulting ma-
trix with a size variable (= form space) or without (= shape space) to a covariance-based PCA 
(see Palaeo-math-101 column in Newsletter 59 for a discussion of PCA). Results of the first 
two shape axes for an analysis that averaged left and right landmarks to correct for single-
side asymmetry is shown in Figure 8 and Table 3.

Figure 7. Multiple linear regression scatterplot of  the two 
trilobite pydigial shape coordnates (η1, η2) on root centroid size 
(RCS). Green = observed values. Red = predicted values.
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Table 3. Principal component loadings for cranidial shape-coordinate variables.
Landmarks PC-1 PC-2 PC-3

1x 0.841 0.042 0.494
1y -0.176 0.797 0.040
2x 0.240 0.105 -0.203
2y -0.129 0.459 0.388
3x 0.252 0.282 -0.486
3y -0.297 -0.083 0.561
4x 0.183 0.223 -0.107
4y -0.043 -0.061 0.029

It’s instructive to compare Figure 8 with Figure 3B from the previous column (Newsletter 68). 
In that result we had corrected an analogous set of trilobite landmark data for position and 
orientation, but not for scale. Obviously the inclusion of size matters a great deal in terms of 
overall partitioning of the observed shape variance. But more to the point, we have now de-
veloped a tool that can partition size and shape much more cleanly in terms of the conceptual 
distinctions between the two, and much more elegantly in terms of the mathematics. Best of 
all, it makes a real difference when we do this as patterns not evident in the previous analysis 
have been revealed here.

In particular, note the tight cluster of taxa with scores close to the lower limit on PC-2 axis, 
consisting of Phacopidina, Delphion, Trimerus, Rhenops, Cybantyx, Cheirurus, and Or-
mathops. While these specimens have very different sizes—Trimerus is the largest specimen 
in the sample, Ormathops the smallest—our shape coordinate results suggest this group 
shares an underlying shape similarity that we have not seen previously. What is this similar-
ity? 

Inspection of the loading table (Table 3) shows that landmark 1 contributes the most to total 
shape variance. This marks the position of the posterior peripheral terminus of the free cheek. 
The importance of this characteristic can be graphically assessed by plotting the shape coor-
dinates and labelling them to show (1) the scatter of points for each landmark location (2) the 
identification of specimens as belonging to the putative group of taxa listed above on the ba-
sis of a qualitative inspection of the PCA optimized shape space (Fig, 9).

Figure 8. Results from a principal component analysis of  non-baseline Bookstein shape 
coordinates for 18 trilobite cranidia (see Fig. 1 for an illustration of the landmarks used).
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Note that landmark 1 exhibits the greatest variance of all  the non-baseline landmarks and that 
it shows a marked separation between those specimens with fixed cheeks whose distal, lat-
eral, posterior termini  are located relatively close to the baseline, and those whose distal 
margins are located further away from the baseline. Landmark 1, along with landmark 2 
where the same pattern is developed but occupies a smaller range of variation, appear to be 
the two most important sources of shape variability over the second shape coordinate (η2). 
With respect to η1, landmarks 1 and 3 exhibit the greatest range of shape variation with land-
mark 1 variation predominating. Taken together it is clear that the pattern of loadings in Table 
3 reflects these aspects of variation in the shape coordinate data in a simple, straight-forward, 
and highly informative manner.

Shape coordinates represent a fundamental part of what distinguishes geometric morphomet-
rics from previous approaches. Bookstein shape coordinates were the first type of shape co-
ordinates to be formulated and much of the early theoretical work in geometric morphometrics 
was inspired by experiments performed using them. These days the term ‘shape coordinate’ 
has become more-or-less synonymous with a different approach to shape coordinate compu-
tation, one that we will discuss in the next column in this series. Nevertheless Bookstein-style 
shape coordinates continue to be employed in several different contexts, in particular studies 
that employ morphometric  approaches in the analysis of ontogenetic  series (e.g., Webster et 
al. 2001; Kim et al. 2002). 

Relative to the ‘other’ sort of shape coordinates, the original Bookstein formulation is mathe-
matically very simple to compute and highly useful  in a wide range of situations. Complica-
tions do arise when using Bookstein shape coordinates, most notably with respect to the fact 
that shape variation in the baseline coordinates is transferred to the non-baseline shape co-
ordinates, sometimes in complex ways. A conceptual  distinction also exists between this ap-
proach to shape specification and use of the centroid size index for size specification. This 
distinction needs to be kept in mind when using Bookstein shape coordinates and centroid 
size in the same study, as do the more counterintuitive aspects of the centroid size index in 
general. However, as I hope I’ve shown, Bookstein shape coordinates and centroid size are 
good places to begin an exploration of what geometric  morphometrics is all about and why it 
marks such a radical departure form the previous distance-based morphometric approaches. 

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1

http://www.palass.org/modules.php?name=palaeo_math&page=1
http://www.palass.org/modules.php?name=palaeo_math&page=1

