
PalaeoMath 101
Distances, Landmarks and Allometry

This column marks a slight change in topic for the PalaeoMath series. Up to now we’ve been 
considering standard bivariate (regression) and multivariate data analysis procedures, tech-
niques that can be applied to a broad range of data. While it is true that in all  those essays 
I’ve used morphological examples as a basis for explaining the procedures, and while they all 
work well  with morphological data, their use is by no means so restricted. At present you’re 
more likely to see PCA, PCoord, MDS, etc. used to analyze non-morphological  than morpho-
logical datasets. 

This wasn’t always the case. Through the mid-1980’s these multivariate procedures were 
used routinely to analyze morphological data. They even formed a ‘school’ of morphological 
data analysis called ‘multivariate morphometrics’, coined by Robert Blackith and Richard 
Reyment (1971). So, what happened? As it turned out the multivariate approach to mor-
phometric  analysis was synthesized with another prominent school of morphometric  analy-
sis—the deformational approach—in the mid-1980s, largely through the work of Fred Book-
stein, but with important contributions by a number of others. This new approach to the analy-
sis of morphological data crystallized into what is now termed ‘geometric morphometrics’ with 
the publication Bookstein’s (1991) treatise on the topic. Now most morphometric  studies are 
undertaken using the methods of geometric  morphometrics. Although it is by no means un-
common to see articles published using the older multivariate morphometric  approaches, 
those are dwindling as more researchers become aware of the power of geometric  mor-
phometrics and learn how to use the software that has been developed to implement the 
various geometric approaches. Accordingly, we will  now turn our attention to this important 
group of methods for handling the analysis of morphological data.

The geometric  morphometric approach is bound up with the concept of the landmark. In the 
context of geometric morphometrics a landmark is defined as ‘a specific  point on a biological 
form or image of a form located according to some rule. Landmarks with the same name, 
homologues in the purely semantic sense, are presumed to correspond in some sensible way 
over the forms of a data set.’ (Slice et al., 2008). There are a number of alternative definitions 
of the term (e.g., Bookstein et al. 1985; Bookstein 1991; Dryden and Mardia 1998; Zelditch et 
al. 2004), but this one seems the most general to me.

Note the careful use of the term ‘homology’. Landmarks are always assumed to represent 
corresponding parts of locations on the body, but they do not always—nor always need to—
represent formal homologues in the biological sense of that term. Indeed, in the vast majority 
of cases landmarks can’t be demonstrated to represent formal biological homologues. The 
concept of a homologue refers to a biological structure in its entirety (e.g., the eye of a fish, 
amphibian, reptile, bird, and mammal), not an isolated mathematical point defined on the ba-
sis of that structure’s geometry (e.g., centre of the iris opening), however convenient that 
point may be for making quantitative comparisons. This centre of the iris is a good example of 
the logical  complications one can get into by (needlessly) becoming embroiled in assertions 
about landmark homology insofar as this point has been used routinely in fish morphometric 
studies, but in fact corresponds to … nothing. There is no structure at the centre of the iris 
opening to argue the homology of. It is simply an abstract point that is as good as any other 
for representing the position of the eye relative to other morphological structures. It is the eye 
that is homologous across vertebrate taxa, not a constructed point in the centre of an opening 
within that structure (see MacLeod 1999 for additional  examples). Landmark points are used 
to locate the positions of structures relative to other structures whose positions are them-
selves represented by other landmark points. This more generic  view of what landmarks are, 
aside from being logically defensible, also has the virtue of being consistent with the specifi-
cation of different types of landmarks (e.g., semilandmarks, constructed landmarks) as well as 
with both historical and contemporary practice.

The representation of morphology by landmarks has both trivial and profound implications 
(Fig. 1). Note that in previous essays we represented morphology by the simple device of 
measuring linear distances on the specimen, as we would with a set of callipers or using a 
ruler on a photograph. This resulted in a table of values; with sets of distances for different 
specimens typically organized into a matrix in which the rows represent specimens and the 
columns represent variables: the set of corresponding distances collected from each speci-
men. Of course the irony of this procedure with respect to landmarks is that, in order to know 
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what distances to measure we needed to define the end-points of the distances which are—
landmarks. Thus, we’ve actually been working with landmark data throughout these essays; 
we’ve just been focusing on the distances between landmarks, not the landmarks them-
selves.

Figure 1 illustrates the difference this makes. Here, aspects of trilobite cranidial shape have 
been represented by the six landmarks: 1: anterior central glabellar margin, 2: posterior cen-
tral  glabellar margin, 3: right posterior glabellar margin, 4: right lateral posterior fixigena ter-
minus, 5: posterior eye margin, 6: anterior eye margin.1 In the middle row of the diagram loca-
tions of these six landmarks have been placed into a scaled, mean-centred coordinate sys-
tem. Note the obvious shape differences. In the lower row the landmarks have been joined by 
a series of chords the lengths of which represent inter-landmark distances. However, spatial 
relations between these chords are able to be appreciated only because we have the retained 
the information encoded in the landmarks. These distances, as distances, are more accu-
rately depicted as a simple table of values (Table 1).

1 Because trilobites are bilaterally symmetrical only the right half of the cranidium has been measured.

Figure 1. Alternative schemes for measuring size and shape 
differences between the cranidia of  two trilobites. Upper row: 
images of  Calymene and Dalmanites specimens with six cranid-
ial landmarks indicated (see text for definition). Scale bars: 
11.87 and 8.20 mm, respectively. Middle row: geometry  of  land-
mark distributions in a scaled, mean-centred coordinate system. 
Lower row: selected inter-landmark distances linking the land-
marks.
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Table 1. Scaled inter-landmark distance values for the trilobite cra-
nidia. All values in mm.

Distance Calymene Dalmanites
a 11.675 8.985
b 6.239 2.346
c 10.343 8.683
d 11.421 10.036
e 9.753 5.450
f 3.551 4.116

As you can see, if all we had was the information included in Table 1 it would be very difficult 
to infer the correct relative positions of the landmarks. Each landmark is located relative to 
others by only two distances, with the exception of landmark 5, which is located by only one. 
The distance values obtained from each trilobite image are consistent with a wide variety of 
landmark configurations, only one of which is correct.

Contrast this with the situation for the landmark coordinate locations (Table 2).

Table 2. Scaled, mean-centred landmark coordinate point data for the 
trilobite cranidia. All coordinates in mm.

Calymene Dalmanites
Landmark x y x y

1 -6.746 8.238 -3.926 6.595
2 -6.746 -3.438 -3.666 -2.386
3 -0.519 -3.827 -1.323 -2.256
4 9.794 -4.605 7.137 -4.208
5 2.400 0.065 1.540 -0.824
6 1.816 3.567 0.239 3.080

Because the coordinate point locations are referenced to linear distances along independent 
x and y axes they record the position of each landmark relative to every other landmark pre-
cisely and succinctly. The data in Table 2 are geometrically equivalent to having a table of all 
possible inter-landmark distances (15 distances in all  for 6 landmarks, see Fig. 2). But in 
terms of reconstructing the geometry of the landmark points they are even better as all the 
coordinates are uniquely referenced to a single location—the origin of the coordinate sys-
tem—thus obviating the need for inferential landmark reconstruction procedures. The 
coordinate-point representation is also far better from an analytic point of view in that many of 
the possible inter-landmark distances are redundant owing to their similarity in length and ori-
entation. The penalty paid for this increase specificity, however, is an increase in the number 
of variables necessary to fully represent the forms. Once we have our data in landmark form 
we can easily compare the results of distance and landmark-based morphometric analyses to 
assess the advantages of using landmarks to measure morphology.

To make use of landmarks the first issues we need to tackle are position and orientation. Be-
cause inter-landmark distances represent simple magnitude, or scalar, variables, so long as 
we don’t make a mistake assembling our data matrix (e.g., put different measurements in the 
same column or the same measurements in different columns) it doesn’t matter where the 
specimen was or how it was oriented when we took the measurements. The distance values 
will  be the same regardless. Not so for landmark variables. Since landmarks encode the fun-
damental geometry of forms, differences in specimen position and orientation are part of 
landmark data. If we are interested in analyzing differences in specimen position or orienta-
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tion, that’s great. For example, if we wanted to analyse the distribution of trilobites across a 
bedding plane and/or their orientation relative to the prevailing current direction, raw landmark 
data would be fine. But if we’re not interested in differences between specimens that have to 
do with their positions and/or orientations during measurement, we need to correct for these 
factors in order to bring the distribution of landmarks into positional and orientational confor-
mity. Fortunately, there are a couple of easy equations we can use to do this.

The first step in this procedure is to decide on a reference orientation: some standard configu-
ration of landmarks all  specimens could be brought to. For the trilobite data an obvious refer-
ence orientation would be landmark data that are mean centred with the mid-line chord (be-
tween landmarks 1 and 2 in the middle part of Fig. 1) perpendicular to the x-axis and parallel 
to the y-axis. This is more-or-less the standard orientation for trilobite illustrations and is 
shown for the example Calymene and Dalmanites landmarks in Figure 1. But even these data 
are slightly out of alignment (note difference in the Dalmanites x-coordinate values for land-
marks 1 and 2). Strict conformity can be gained by (1) reversing the x and y columns of the 
data2, (2) centring the landmark distribution on landmark 2, (3) calculating the slope of the 
mid-line chord, (4) calculating the angle between the mid-line chord and the x-axis (= 0°), and 
(5) rigidly rotating the entire landmark distribution so that landmark 1 lies on the x-axis, and 
landmark 2 lies at the origin, of the coordinate system. The procedure for making these calcu-
lations is detailed in the Palaeo-Math 101-2 spreadsheet and the equations needed for im-
plementing steps 4 and 5 are listed below.

Step 4 (14.1)

Step 5 (14.2)

In equation 14.1 m1 and m2 represent the slopes of x-axis (= 0°), and the mid-line chord.3 
Once the correct rotated values have been obtained the x and y columns can be re-
transposed and the entire landmark dataset re-centred about the new mean x and mean y 

2 This step rotates the landmarks by  90° and is needed with these data to avoid complications arising 
with the calculation of an infinite mid-line slope for some specimens.

3 See the first essay in this series (Newsletter 55) for instructions on how to calculate a slope.

Figure 2. All pairs of distances between the six trilobite land-
marks. See text for discussion.
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values (= centroid). Table 3 shows the results of these calculations for the two example trilo-
bite genera.

Table 3. Scaled, rotated, and mean-centred landmark coordinate point 
data for trilobite cranidia. All coordinates in mm.

Calymene Dalmanites
Landmark x-rotated y -rotated x -rotated y -rotated

1 -6.746 8.238 -3.734 6.706
2 -6.746 -3.438 -3.734 -2.279
3 -0.519 -3.827 -1.388 -2.217
4 9.794 -4.605 7.012 -4.413
5 2.400 0.065 1.516 -0.869
6 1.816 3.567 0.328 3.072

Now that we have our landmark data in a form suitable for comparison we can perform a PCA 
analysis on these data and compare the results of that with a PCA of the inter-landmark dis-
tance data as shown in Figure 1 and Table 1. Eighteen of our 20 trilobite images are suitable 
for the collection of these data (names shown in Fig. 3).

Ordinations of the two datasets using the first two principal  component axes (Fig. 3) are 
broadly similar, as would be expected. The amount of variation represented by PC-1 and PC-
2 relative to the total variation is slightly lower in the case of the landmark-based analysis. 
This is also expected as that dataset contains twice as many variables as the inter-landmark 
distance dataset. 

In both cases the PC-1 axis appears to ordinate taxa by size, with small  individuals (e.g., Bal-
izoma, Ormathops) projecting to positions low on the axis and large individuals (e.g., Rhe-
nops, Trimerus) projecting to positions high on the axis. Close inspection of the diagrams 
shows the taxa are all in precisely the same rank order along PC-1, confirming the interpreta-
tion of this axis as a size index. However, the two analyses differ strongly in terms of the PC-2 
ordination. Since the landmark-based dataset has the higher geometric  information content 
this result suggests the distance data are masking both similarities and differences among 
taxa and so presenting a somewhat biased picture of the true state of morphological affairs. 
In other words, the switch to representation of the same geometries by landmarks made a 
difference not in terms of the assessment of size similarity, but in the assessment of shape 

Figure 3. Ordination of  trilobite cranidia inter-landmark scaled distances (A) and scaled, rotated 
landmark positions (B) in the space of  the first two principal components  of  the respective da-
tasets’ covariance matrices.
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similarity. This difference is most readily appreciated by inspecting the orientation of the prin-
cipal component axes relative to the original variables (Table 4).

Table 4. Principal component loadings for distance-based (left) and 
landmark-based (right) covariance matrices.
Distancea PC-1 PC-2 Landmark PC-1 PC-2

a (1-2) 0.646 0.453 1x -0.315 0.191

1y 0.600 0.610

b (2-3) 0.222 0.105 2x -0.315 0.191

2y -0.240 0.124

c (3-4) 0.323 -0.516 3x -0.020 0.141

3y -0.248 0.104

d (4-6) 0.444 -0.568 4x 0.419 -0.468

4y -0.288 -0.300

e (6-1) 0.454 0.329 5x 0.175 -0.185

5y 0.002 -0.237

f (5-6) 0.160 -0.292 6x 0.055 0.131

6y 0.174 -0.302
aNumbers in parentheses refer to distance-defining landmarks.

The distance-based results (Table 4, left side) are highly reminiscent of the example given 
previously in the column on principal component analysis (see Newsletter 59). All loadings on 
PC-1 are positive but unequal indicating this axis represents allometric  size change.4  The 
theoretical value of a six-variable isometric  axis is 0.408. Accordingly, distance a shows 
strong positive allometry, distances d and e weak positive allometry, and the remainder weak 
negative allometry. The orientation of these distances (see Fig. 1) suggests the glabellar mid-
line is disproportionately longer in large sized specimens with the overall  cranidial  length 
slightly longer than would be expected under a model of strictly isometric  size change. That 
fact that distances located in the posterior portion of the structure are negatively allometric 
also suggests a slight narrowing of the cranidial shield accompanied by a strong reduction in 
eye size.

Whereas the PC-1 axis represents mixed size and shape variation, the PC-2 axis represents 
pure shape variation as indicated by its mix of positive and negative loadings. Here, taxa 
scoring high on PC-2 exhibit large values for the glabellar mid-line and anterior cranidial 
shield distances and small values for distances attached to landmark 4 in the posterio-lateral 
region. Eye size is also negatively correlated with an increase in PC-2 score.

While this might appear to be a lot of information, note that, for the most part, each distance 
must be interpreted in isolation from every other. High scores on PC-1 and PC-2 mean small 
eyes, low scores large eyes. But how is the position of the eye changing with respect to the 

4  Readers who recall the previous essay on the analysis of  univariate and multivariate allometry will 
note—possibly  with some surprise—that I have not log-transformed the original distance data. The pur-
pose of the log-transform in allometric studies is to enable linear regression methods to estimate non-
linear regression models (e.g., logistic growth curves). While this is the classic procedure for allometric 
analyses,  the analysis  of  non-transformed data is also appropriate for allometric investigations insofar 
as (1) most morphological data are not demonstrably non-linear and (2) the principle of allometry per-
tains to any comparison between size and shape data, not just comparisons between log-transformed 
variables. In the end the decision to employ a log-transformation should be dictated by the purpose of 
the analysis, the data,  and characteristics of  the data analysis method. Allometric theory is equivocal 
with respect to this issue. See Klingenberg (1996) for additional discussion.



7

position of the glabella? Is the glabella pushing out anteriorly, pushing back posteriorly, or 
both as size increases across these taxa? These questions are very difficult to answer from 
the distance-based results because each distance confounds two distinct sources of shape-
change data—change in the x-axis direction and change in the y-axis direction—despite the 
fact that information about these directions of shape change was collected in order to calcu-
late the inter-landmark distance values.

Contrast this with the much more complex and information-rich summary provided by the 
landmark data (Table 4, right side). The first thing to notice here is that the simple multivariate 
allometric  interpretation of PC-1 doesn’t necessarily apply to landmark data. This is indicated 
by the mixture of positive and negative loading values on the PC-1 axis. A mixed PC-1 load-
ing pattern is characteristic  of many landmark datasets and is a reflection of the fact that sca-
lar distances between landmark points can increase at the same time as either x or y coordi-
nate values decrease (e.g., as the orientation of the distance becomes either more or less 
aligned with the x or y axis). 

As we noted in interpreting the distance and landmark data ordinations along PC-1, the major 
axis of variation for the landmark dataset appears to reflect size differences among the taxa 
despite the fact that the loading pattern does not identify it as an allometric  size axis. This 
somewhat counter-intuitive result has occurred in the example analysis because the two 
landmark variables that load most strongly onto PC-1 (1y and 4x) are also the variables with 
the largest mean values (as well as the largest variances) by a considerable margin. Also 
note that these positive loadings are much higher than any of the negative loadings for the 
other variables on PC-1. Geometrically, this means that, for these specimens, the glabellar 
mid-line length and lateral width in the region of posterior extra-glabellar cranidial shield are 
exhibit both large displacements from other landmarks and increase with increasing overall 
size at disproportionately higher rates than those of any other variables. These two particular 
aspects of the morphological variation are dominantly responsible for the perceived size in-
crease among the taxa in our sample. But how can this be when the distance-based results 
clearly identified distances a, d, and e as being the most positively allometric? A moment’s 
reflection reveals the reason and, along with it, the power of the landmark approach. 

The disproportionately high loading on landmark 1y indicates that migration of landmark 1 in 
the anterior direction is the shape change most responsible for size differences among taxa. 
This is reflected perfectly in the distance results by the high loadings assigned to distances a 
and e, both of which share landmark 1. In the distance-based results it was ambiguous 
whether the cranidial mid-line was getting longer because of a change in the relative positions 
of landmarks 1, 2 or both. The landmark-based results neatly resolve this ambiguity. The fo-
cus of change is landmark 1 and the direction of change is along the y-axis (anterior-ward). 
Similarly, distance e has a high loading on the distance-based PC-1 because that distance is 
being dragged out by the anterior-ward migration of landmark 1. To be fair, there is a slight 
anterior-ward migration in landmark 6 as well, but its rate is far outstripped by that of land-
mark 1. As for landmark 2, the distance between it and the origin is actually decreasing with 
increasing cranidial  size. Thus, the whole glabellar mid-line is shifting anterior-ward relative to 
the other landmarks.

Along the x-axis, it’s more-or-less the same story. Landmark 4 is shifting its position strongly 
in a lateral direction, away from the mid-line and migrating anteriorly at a slightly higher rate 
than landmark 2. This shift accounts for the high positive loading on distance d in the 
distance-based results. Moreover, inspection of loadings for landmark 2 also explains the 
negative allometry shown for distances b and c as that landmark (along with landmark 1) is 
migrating toward the y-axis (= line containing the form centroid) as size increases. In other 
words, within this sample the cranidia are becoming disproportionately longer (via anterior-
ward migration of landmark 1) and narrower via migration of landmarks 1 and 2 inboard in the 
lateral direction), and the lateral portion of the cranidial shield getting disproportionately wider 
(via outboard lateral migration of landmark 4) with increasing cranidial size.

Now let’s have a look at the eye. The distance-based results tell us only that the eye is getting 
smaller with increasing cranidial  size. The landmark-based results confirm it’s getting rela-
tively smaller (difference between loadings on both 5y-6y vs. 1y, and 5x-6x, vs. 4x), but also 
that it’s shifting to a position farther back on the cranidial shield (difference between 6y and 1y 
loadings) with a posterior margin placed closer to the glabella (difference between 5x and 4x 
loadings). In addition, differences in the eye landmark loadings themselves indicate its orien-
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tation is changing such that the chord joining the anterior and posterior landmarks is rotating 
anti-clockwise with increasing cranidial  size. And all  this is just the interpretation of landmark 
PC-1!

With respect to landmark PC-2 we note the broad regional  distinctions among the landmarks 
with 1, 2, and 3 all migrating away from the origin in both x and y dimensions (1y very strongly 
so), and landmarks 4 and 5 migrating toward the origin. This represents a subdominant pat-
tern of cranidial lengthening—differentially focused in the anterior region of the form—and 
lateral compression, accompanied with strong reduction in eye width and further rotation of 
the eye landmarks.

Admittedly the previous three paragraphs are a bit dense and abstract. But I hope the take-
home message is clear. Analysis of landmark coordinate positions enables far more geomet-
ric  information to be incorporated into an analysis—and supports far less ambiguous interpre-
tation of the results—than the analysis of inter-landmark distances. In fact, the amount of in-
formation that can be gained from an analysis of landmarks is so large that much of the effort 
in developing geometric  morphometric  techniques has been spent developing mathematical 
tools to enable interpretations like those above to be made not by inspecting tables of num-
bers (as we have done here and as must be done with all  standard multivariate data-analysis 
techniques), but by inspecting new types of ordination diagrams that summarize the complex 
and subtle geometric information in an easy-to-interpret graphical  manner. It is to these meth-
ods with their accompanying graphics that we will turn our attention in future essays.

Most presentations of geometric morphometrics begin simply by defining landmarks and then 
diving into the subject of shape coordinates. Here I’ve tried to focus a bit more on the link be-
tween distance-based morphometrics and landmark-based morphometrics so that when we 
get to shape coordinates (next column) the distinction between old-style multivariate mor-
phometrics and new style geometric  morphometrics won’t seem so abrupt. Although the tran-
sition between multivariate and geometric  morphometrics occurred in a sufficiently short 
space of time that those of us who lived through it often speak of it as a ‘revolution’, the revo-
lution actually had quite deep roots. Nevertheless, the translation and rotation methods I’ve 
outlined in this essay are based on equations that were developed for general geometric pur-
poses, not specifically for morphometrics. These are not considered part of the established 
corpus of geometric morphometrics methods as they have been superseded by methods that 
allow greater control of size and shape aspects of the data. Instead, they represent precursor 
concepts and tools that form the (largely unacknowledged) background against which the dis-
cussion of more mainstream geometric  morphometric techniques should be viewed. As such, 
there are no ‘canned’ programmes for performing the standardizing rotations I have illustrated 
in this essay other than the Palaeo-Math 101-2 spreadsheet.

Norman MacLeod
Palaeontology Department, The Natural History Museum

N.MacLeod@nhm.ac.uk
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Don’t forget the Palaeo-math 101-2 web page, now at a new home at: 
http://www.palass.org/modules.php?name=palaeo_math&page=1
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