
PalaeoMath 101 

Multidimensional Scaling and Ordination 
 
This column is devoted to completing our discussion of basic multivariate data analysis by 
tying up a bit of a loose end. In previous columns I’ve approached the description of various 
bivariate regression and multivariate analysis methods from a variable-centred point-of-view, 
at least for the most part. That is to say, I’ve focused on describing how the geometry of the 
calculations allows us to sense, summarize, and understand relations among variables 
across the example datasets. The obvious exceptions have been my discussions of principal 
coordinate (PCoord) and Q-mode factor analysis (Newsletter 61) as the explicit goals of both 
these techniques is to construct of a picture of similarity relations between the objects from 
which measurements and/or observations were obtained.  
 
Nevertheless, I’m sure it has not escaped you attention that the resolutely r-mode methods of 
principal components analysis and factor analysis (newsletters 58 and 59 respectively) also 
produce pictures of similarity relations among objects in the form of scatterplots of those 
objects within the space formed by the new component or factor variables. Correspondence 
analysis yields similar plots of between-object similarity based on frequency data, with the 
added advantage of enabling geometric relations between variables to be represented in the 
same space (see Newsletter 62).

1
 Likewise, canonical variates (Newsletter 65) are 

convenient for displaying relations between objects in spaces that emphasize differences 
between a priori-defined groups. The spaces formed by partial least squares analysis axes 
(Newsletter 63) are, again, used to construct images of between-object similarities, though in 
this case the focus of the procedure is the degree to which different datasets exhibited the 
same inter-object similarity structure.  
 
The r-mode/Q-mode distinction is real, but actually pertains to the means by which each 
technique’s goals are achieved. All these approaches provide critical information about the 
structure of covariation among variables and can be used to obtain a visual sense of the 
structure of similarity relations among objects. Consequently, their use allows us to first 
optimize, then interpret the nature of the geometric spaces we within which portray object 
similarity patterns. This gives us the power to test a wide range of hypotheses because we 
can see—and so understand—the nature of relations between variables and objects. But this 
power comes at a subtle and little-understood price.  
 
The feature that gives PCA, PCoord, factor analysis, correspondence analysis, CVA and PLS 
their power to bridge the gap between variables and objects is their common dependence on 
eigenanalysis. Eigenanalysis is a method for estimating the major directions of variation in 
sets of numbers. While the assessment of variation in terms of both its relative directions and 
magnitudes is a logical and common-sense approach to understanding the behaviour of 
variable sets, is this the only—or even the most appropriate—approach we could use to 
understand similarity relations between objects? 
 
Note that cluster analysis (Newsletter 66) is very different in this respect from the 
eigenanalysis group of techniques. Cluster analysis provides a means whereby object-based 
similarity relations can be represented, but does not do so by assessing the structure of 
relations among variables. Rather, it treats each object as set of descriptions (= the state of 
the variables the object manifests) and simply calculates a measure between-object similarity, 
usually in terms of a distance. Once the structure of inter-object distance relations has been 
estimated cluster analysis summarizes that structure, but does so in a manner that provides 
no direct insight into the nature of relations between the variables. In other words, cluster 
analysis provides an answer to the question of how similarity relations are organized across 
objects in a dataset, but has a very limited capacity to help us understand why that answer 
was obtained in terms of pattern relations among the original variables. Should this be a 
cause for concern? 

                                                        
1
 It is possible to scale PCA and factor axes to portray relations between object and variables in the 

spaces so formed (these are called ‘biplots’), but this represents a step beyond the calculation of 
principal components or factor axes sensu stricto. Such scaling is a fundamental part of correspondence 
analysis. 
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The only reasonable answer to this question is ‘It depends.’. If the hypothesis we are testing 
can be resolved solely by determining the structure of between-object similarity relations 
there may be no need  to understand the nature of the space within which those similarity 
relations are portrayed. How the space related to the original variables, or whether it has 
been optimized in terms of the representation of major patterns of variation across the dataset 
as a whole, may be irrelevant. But one thing that doesn’t change is the need to have some 
way of sensing how ‘good’ the resulting picture of between-object similarity relations is. 
 
Of course, the eigenanalysis family of techniques provides this quality-control information 
through the eigenvalues. These are the lengths of the major and minor axes of a 
hyperdimensional spheroid fit to the variables when represented in a variance-covariance 
space (Fig. 1). For sets of highly correlated variables, the first few eigenvectors will typically 
subsume a much greater proportion of the overall variance than any single variable axis. If 
these vectors are then used to portray inter-object similarity relations, a ‘good’ result will 
typically be that in which the overwhelming majority of the observed variation is represented 
by 2-3 eigenvector-based axes. Decision criteria vary depending on the problem under 
investigation, but most analysts would feel that being able to summarize 90 to 95 percent of 
the observed variation in a dataset in 2-3 eigenvectors is accurate for the purpose of 
authoritative interpretation. Note, this feature of eigenanalysis is delivered by the technique’s 
ability to summarize the structure of covariance relations among variables. It has nothing to 
do with assessments of inter-object similarity per se. 
 

 

Figure 1. Geometric relations between variables and eigenvectors. 
Eigenvectors are the major axes of a covariance spheroid (ellipsoid in 
two dimensions) centred at the origin of a variance-covariance space 
and recursively fit to the swarm of vectors representing the variance-
covariance structure of a set of variables. The eigenvector coefficients 
are the cosines of the angles between the eigenvectors and the variable 
vectors. The eigenvalues are the lengths of the eigenvectors. The sum 
of these lengths is proportional to the total amount of variance across all 

variables in the system. 

 
As I’ve alluded to above, cluster analysis has no parallel to the eigenanalysis in terms of 
numerical quantities that summarize the amount (e.g., eigenvalues) and kind (e.g., 
eigenvector coefficients) of information present along the axis against which the cluster 
pattern is formed. Under agglomerative clustering this is typically done by estimating the 
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amount of overall distortion inherent in the portrayal of those relations as a dendrogram. 
Operationally this is accomplished via back-calculation of an implied similarity matrix and 
comparison of that to the original similarity matrix using the cophenetic correlation coefficient 
(see Newsletter 66), which provides a very rough assessment of the overall distortion. As we 
have seen, force-fitting a hierarchical model to the data in order to distinguish clusters of 
objects can result in substantial distortion being introduced. Partition clustering approaches 
(e.g., K-means clustering) are often better in this respect as they do not attempt to fit a 
hierarchical model to the data (and so avoid generating distortions). However, these 
approaches assume the data exhibit subgroup-level structure and will always find that 
structure regardless of whether it is the dominant pattern in any particular dataset.  
 
In other words, trying to portray the pattern of high-dimensional data in low-dimensional 
spaces will always involve distortion. But let’s go back to first principles for a moment to 
regain our perspective. The objects in a dataset exhibit patterns of attributes that exist at 
(potentially) all scales. If distributions of attributes are strongly clustered there will be a clear 
distinction between large-scale (e.g., between groups) and small-scale (e.g., within-groups) 
patterns. Canonical variates analysis takes explicit advantage of this distinction by using a 
two-step eigenanalysis procedure to focus the analysis on portraying between-groups 
differences. However, even though small-scale patterns play a role in determining the 
orientation of eigenvectors, the resulting vector orientations will always be most closely 
aligned with the large-scale patterns present in the data. If all the data in an analysis are 
normally distributed, this difference between large and small-scale patterning may not be that 
important—hence many multivariate statisticians’ love of qualifying their statements in terms 
of normality assumptions. But many (most) biological and paleontological datasets exhibit 
distributions that are far from normal. In those cases where the focus of the analysis is on the 
portrayal of inter-object similarity relations is cluster analysis or eigenanalysis the best we can 
do?. 
 
Of course, the answer to this question is ‘No!’. The name of the technique that can help us in 
this regard is multidimensional scaling, or MDS for short. Like cluster analysis, MDS is 
actually a family of techniques with many different variants on the common theme. Also like 
cluster analysis, MDS can be used to analyse an astounding variety of data. Best of all, MDS 
makes no prior assumptions about the nature of similarity relations present in the data (e.g., 
hierarchical or non-hierarchical), the scales of similarity patterning they contain, the 
distribution of the data within variables, or the presence/absence of well-defined sub-group 
structure within the overall dataset. 
 
The term ‘multidimensional scaling’ means different things to different people (see below). In 
this column I’m going to refer to it as a specific type of numerical procedure that has seven 
basic steps. 
 

1. A Q-mode distance matrix ! is calculated between all pairs of objects across a set of 

variables and/or observations where !ij is the distance between object i and object j. 

 
2. These objects are then arranged in a configuration within a k-dimensional space. The 

typical starting configuration is random, but may also be the configuration of the first k 
principal coordinates. 
 

3. A new distance matrix 

! 

d  is calculated between all pairs of objects across  the k 

dimensions of configuration space where 

! 

dij  is the distance between object i and 

object j. 
 

4. A regression of 

! 

d  on ! is performed. The purpose of this regression is to specify the 

functional relation between the configuration space and the original (high-

dimensional) distance data. Based on this regression the quantity 

! 

ˆ d  is then be 
determined using the following equation. 

 

 

! 

ˆ d ij = a"ij + b + #ij  (13.1) 
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where 

! 

a  and 

! 

b are constants (e.g., the slope and y-intercept of a 

! 

d  on ! linear 

regression) and 

! 

" is the error associated with the regression. This quantity (

! 

ˆ d ) is 

called the ‘disparity’. 
 

5. A test is made of the fit between the disparity distances and the configuration 
distances in the k-dimensional space. This goodness of fit is summed into single 
statistic that represents the amount of distortion represented by the test configuration 
of points in the k-dimensional space.  
 

6. The disparity values (

! 

ˆ d ) are then substituted for the configuration distance values 

(

! 

d) and used to calculate a new configuration space. 

 
7. Steps 4–6 are repeated until the test performed at step 5 indicates no further 

improvement in the goodness-of-fit of the configuration space on the original distance 
data matrix can be achieved, or until a predetermined iteration limit is reached, 
whichever comes first. 

 
Note first how similar this fitting procedure is—at least in principle—to the procedure for 
obtaining an eigenanalysis (see Newsletter 58). If only two variables are involved the 
equation of the first eigenvector (= first principal component) can be calculated directly. This 
is identical to calculating the slope of a major axis regression (see Newsletter 56). For all 
higher dimensional datasets the first eigenvector must be estimated using an iterative 
procedure that compares the goodness of fit of a test vector to the major dimensions of 
variation within the sample. The orientation of subsequent eigenvectors are fit in the same 
way subject to the additional constraint that they must be orthogonal to the orientation of all 
preceding eigenvectors. 
 
The MDS approach uses a similar strategy to estimate the configuration of points in the k-
dimensional space. But note that the MDS algorithm (1) is restricted to assessing the fit 
across a pre-determined set of dimensions (e.g., does not try to use all possible dimensions 
to obtain a perfect solution), (2) assesses the fit between the disparity and configuration 
distances globally, across the entire scale of distances present in the dataset, and (3) places 
no constraints on the orientation of the solution vectors. Thus, unlike strictly eigenanalysis-
based methods no preference is given to fits across large-scale patterns in the data; and, like 
CVA axes, there is no guarantee the final MDS axes will be aligned with major patterns of 
variation in the original data or even that they well be orthogonal to one another in the space 
of the original variables. 
 
Of course, the goodness-of-fit test is very important to the outcome of the procedure. While 
there are alternatives, most MDS programs take Kruskal’s (1964a) Stress (1) statistic as a 
reference point to obtain this estimate. 
 

 

! 

! 

S = "ij # dij( )
2

j> i

n

$
i=1

n

$ dij
2

j> i

n

$
i=1

n

$  (13.2) 

 
This is a scaled sum-of-squared-differences estimator.  
 
Let’s take a look at an MDS analysis now. But instead of jumping head-first into the trilobite 
data, let’s analyze a dataset about which we can develop some expectations using intuition 
alone. For this purpose the analysis of geographic map distances presents a compelling 
target of opportunity. For our example, let’s use a area with which many UK palaeontologists 
are reasonably familiar, the Isle of Wight 
 
Figure 2 shows a simple map of the Isle of Wight with the location of 13 named locations 
marked and Table 1 shows a road distance triangle for these locations. 
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Figure 2. Isle of Wight with selected locations marked. Modified from Google Map (2008). 

 

Table 1. Road distances (in miles) between selected Isle of Wight locations (see Fig. 2). 
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Bembridge 0.0             

Blackgang 18.0 0.0            

Brightstone 17.8 5.9 0.0           

Cowes 1.7 13.7 12.2 0.0          

Newport 10.7 9.0 7.1 5.0 0.0         

Northwood 14.0 12.4 10.2 1.6 3.2 0.0        

Ryde 6.9 16.2 13.6 11.4 6.4 9.6 0.0       

Sandown 5.1 10.4 15.4 14.0 8.9 12.3 6.4 0.0      

Seaview 3.9 17.3 15.8 15.2 9.0 12.3 3.0 6.3 0.0     

Shalfleet 17.0 11.1 4.9 7.5 6.1 8.1 12.3 15.0 16.2 0.0    

Shanklin 7.3 9.5 12.0 14.2 9.1 12.4 8.6 2.2 8.5 15.1 0.0   

Totland 23.2 12.6 8.3 14.1 12.4 14.3 18.7 21.2 22.5 6.3 21.4 0.0  

Ventnor 11.0 6.0 12.6 15.7 10.7 14.1 12.1 5.9 12.1 16.9 3.6 19.3 0.0 
              

 
Given that the road distance matrix locates each destination relative to every other, we should 
be able to use MDS to reconstruct the map shown in Figure 2 from the data present in Table 
1. Some error will be generated owing to the fact that road distances are not the same as 
straight-line map distances. This discrepancy will help make an important point about MDS a 
bit later on. Nonetheless, given the scattered nature of these locations across the island the 
rank order of road distances should provide relatively accurate estimates of their map 
distances from one another. 
 
Since MDS is a computation-intensive, iterative procedure I’m not able to take you through all 
the individual calculations performed. A sample of the first few steps following the simple 
MDS procedure outlined in Jackson (1991) is provided in the PalaeoMath 101 spreadsheet 
(see url below). Indeed, because the initial configuration of points can be random—in which 
case it will differ with each analysis depending on the value used to seed the random number 
generator—the calculations will differ in their details with each run of the program, even for 
the same dataset! What we can do (below) is discuss what options were selected for the 
analysis, why, and how those affect the results we obtain. 
 
The first option we need to specify when implementing MDS analysis is the dimensionality of 
the solution. That’s actually an easy decision for the Isle of Wight data. Even through we are 
working with a 13 x 13 matrix of distances, we have good reason to suspect the correct 
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dimension of the solution is 2. After all, these are distances taken from a flat map and the 
result we’re after is a reconstruction of that map. 
 
In point of fact, virtually all MDS analyses try to fit the data into a two-dimensional or three-
dimensional space for the simple reason that these spaces are able to be visualized using 
standard graphing methods. The MDS procedure can find solutions in high dimensional 
spaces. But given that the point of MDS is to visualize similarity relations existing in datasets, 
there usually seems little point in creating solutions that can’t be visualized in their entirety. 
Naturally this principle also applies to other multivariate methods (e.g., PCA, PCoord, 
Correspondence Analysis) when these are used to achieve a data-scaling purpose. 
Regardless, the choice of the solution’s dimensionality is more obvious with MDS since this 
value must be specified by the user at the outset of an analysis. Also, because it is an 
iterative procedure, the first two dimensions of a two-dimensional MDS solution will not 
necessarily bear any relation to the first two dimensions of a three-dimensional MDS solution. 
 
The second option needing specification is the regression model the algorithm  will use to 
estimate the disparity distance values. Since distances are ratio-type variables, with a true 
scale and true zero point, we could draw on analogy with PCoord analysis and use a linear 
regression as a basis for fitting the configuration of data points to the distance matrix. 
Selection of a linear regression model means we will try to match between-object (= inter-
location) distances as closely as possible to the original distance matrix shown in Table 1 
(see Fig. 3). Under this model, our result would be example of ‘metric MDS’ for we are using 
all the information present in the configuration and basis distance matrices to scale the data. 
I’ll have more to say about this decision shortly. 
 

 

Figure 3. Example linear regression of MDS configuration distances 
(k=2) on the original distances for the first 13 between-location 
comparisons in the Isle of Wight data (see Table 1). Blue symbols 
represent raw data values for this fitting cycle. Red symbols represent 

disparity distances (

! 

ˆ d ) determined as a result of the regression 
analysis. Regression residuals are indicative of the error associated with 
this fitting iteration. 

 
There are a few other decisions that must be made, but these will differ from between 
application programmes. Because I’m using the MDS procedures included in the XL-Stat  
programme package to perform these example calculations I have the ability to select 
between several stress statistics, though for simplicity and consistency I chose the Kruskal’s 
Stress (1) index. It is also worth noting that XL-Stat employs a stress majorization algorithm 
based on de Leeuw’s (1977) iterative majorization in order to adjust positions of objects in the 
configuration space during refinement of the MDS solution. This approach has been shown to 
yield results that converge on the optimal configuration more quickly Kruskal’s (1964a) 
steepest decent approach. 
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Figure 4 shows results of the two-dimensional, metric MDS representation of the Isle of Wight 
distance matrix (Table 1). 
 

 

 
Figure 4. Metric MDS configuration space (k=2) for the Isle of Wight location distance data. 

 
Inspection of the diagram reveals that all locations are in their correct relative positions. 
However, note that the MDS-1 axis is not aligned with the major axis of the point distribution, 
as it would be of this was a PCA or PCoord space. There are two reasons for this. First, the 
final point configuration is, to some extent dependent on the initial configuration (= 
configuration from which the iterative procedure begins). Because XL-Stat package uses a 
random configuration as the starting point, there is no guarantee the first MDS axis will lie 
close to the first PCA/PCoord axis. 
 
Note also there are no equations for the MDS axes that can be used to relate the MDS space 
back to the space of the original variables. This is because the MDS space represents a 
series of adjustments of the relative point spacing in the context of the original or starting 
configuration space. Essentially, information is added piecemeal to the MDS solution by the 
sequence of regression-based adjustments (see Fig. 3) with the final configuration bearing no 
simple relation to the space of the original variables. This might be seen as a difficulty when it 
comes to interpretation and it is truly what separates MDS from PCA/PCoord. But this 
piecemeal procedure it is also what gives MDS its power. If a simple relation between the 
configuration space and the variable spaces were desired a decision would have to be made 
regarding what aspect of the original variable space to align the MDS axes with. By using 
iterative regression the focus remains on achieving the best global fit of the configuration 
space to the original data. 
 
In order to present the results of a MDS analysis in a form that more closely resembles a 
PCA/PCoord result you can perform a PCA on the raw MDS coordinate values (see Fig. 4). In 
addition to looking more like a PCA result, this procedure also ensures that the MDS-PCA 
axes are uncorrelated with one another. If you use this secondary PCA procedure note that 
the eigenvalues refer to the amount of variance exhibited by the MDS configuration space 
scores, not the variance present in the original data. If the dimensionality of the PCA and 
MDS spaces is the same, the total percent variance express by these hybrid MDS-PCA axes 
will always be 100. 
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Figure 5. PCA-metric MDS configuration space (k=2) for the Isle of 
Wight location distance data. 

 
Comparison of figures 2 and 5 shows some obvious distortions. Shanklin has been placed a 
bit too close to Sandown and Northwood is too close to the chord joining Cowes and 
Newport. To a large extent these distortions are only apparent, resulting from the fact that 
road distances were used to fix the relative locations instead of simple Euclidean distances. 
Of course, except for artificial map examples such as this we won’t know what the MDS 
configuration for a set of data ‘should’ look like. Setting these issues aside, we can say that, 
to a very high degree, the MDS procedure was able to reconstruct a surprisingly accurate 
map of the our 13 location across the Isle of Wight from road distance data. But how accurate 
is this configuration, really? 
 
Two accuracy measures are available in MDS. The first is the final value of the stress statistic 
used to asses the quality of the point configuration during configuration space adjustment. For 
the Isle of Wight data this value is 0.070. Since a perfect solution would have a stress 
coefficient of 0.0, and any stress value less that 0.1 is usually considered ‘good’, our metric 
MDS result  would be considered ‘good’ if this had been an actual analysis. The point 
distribution certainly agrees well with a qualitative ‘eyeball’ test, comparing figures 2 and 5. 
But the stress statistic is a measure of overall distortion, akin to the cophenetic correlation 
coefficient of a cluster analysis. What the stress statistic doesn’t do is to provide information 
about the degree to which our data match the expectations of the linear model we’ve used to 
refine the configuration or whether the model had trouble representing data from a particular 
range within the overall scaling problem. 
 

These assessments can be made by looking at relations between the original distances (

! 

" ), 

the final configuration distances (

! 

d ) and the disparities (

! 

ˆ d ). Graphs of these quantities are 
known as Shepard diagrams, after R. N. Shepard, one of the founders of modern MDS. 
Figure 6 shows the relationship used to assess the goodness of fit of the result in terms of the 
final configuration distances and the disparities. 
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Figure 6. Shepard diagram for the Isle of Wight  metric MDS result (k=2). 

 
Note how well the MDS disparity predicts the final configuration distance. In a prefect analysis 
the predicted distance would agree perfectly with the configuration distance and all the points 
would fall along a straight line. Our metric MDS result isn’t perfect, but it certainly provides 
evidence that a high-quality fit has been achieved across the entire range of scales present in 
the dataset. 
 
Recall, the metric MDS model uses linear regression to guide its search for an optimal  
configuration (Fig. 3). This is an obvious choice, but it is not the only option available. Indeed, 
linear regression is one of the most restrictive choices  we could make. We would use a 
metric MDS approach if we had high confidence in the quality and type of our original data. 
Certainly we do have confidence in the data type. The distances we’ve calculated are true 
metric distances. They are not, for example, ‘distances’ inferred from a set of ordinal variables 
whose quantitative relations to one another are unknown. We can use MDS to analyze 
ordinal data, but in that instance the metric MDS model would not be our best choice. 
 
What about the quality of our data? Remember these are road distances, not Euclidean 
distances. On the Isle of Wight, road tracks are much denser on the eastern side of the island 
(see Google maps 2008). Also, as there are no bridges across the inlet extending from 
Cowes to Newport, this represents a natural barrier forcing routes between locations on the 
eastern and western sides of the island  to detour through Newport, occasionally adding 
significant distance to the trip. As a result the road distance data represent an estimate of the 
distribution of locations across the island, but it’s a biased estimate, strongly influenced by 
natural barriers to travel and idiosyncrasies in the island’s transportation network. In more 
palaeontologically realistic examples, we often deal with proxy variables, variables that 
measure some quantity we are interested in, but only in an indirect manner. In such situations 
we might suspect there is substantial error in the data, so much so that we would be ill-
advised to slavishly apply the metric-MDS (regression-based) model that treats the original 
distance data as an error-free standard. What to do? 
 
Fortunately, there are a wide range of alternative models we can use with MDS to explore the 
configuration space. Full discussion of the ins and outs of all fitting models is well beyond the 
scope of this essay. However, one of the most commonly used, flexible and innovative ‘non-
metric model is isotonic (also called monotonic) regression. 
 
Isotonic regression of two variables (say y on x) reorders both such that the x-values are 
uniformly increasing and then adjusts the values of y such that those values increase or 
remain constant relative to the x-values. This is accomplished by finding all pairs of y-values 
in which the second is smaller than the first and replacing both with their average. Figure 7 
uses the same data analyzed in Figure 3 as an example of isotonic regression.  
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Figure 7. Example isotonic regression of MDS configuration 
distances (k=2) on the original distances for the first 13 between-
location comparisons in the Isle of Wight data (see Table 1). Blue 
symbols represent raw data values for this fitting cycle. Red 

symbols represent disparity distances (

! 

ˆ d ) determined as a result of 
the regression. Regression residuals are indicative of the error 
associated with this fitting iteration. Note how much less error is 

generated by the isotonic, as opposed to the linear regression (see 
Fig. 3). This results from the more flexible, non-linear character of 
the isotonic model. Non-metric MDS using isotonic regression 
usually results in a better fit of the configuration space to the 
original data, irrespective of data type. 

 
As can be seen from the figure, isotonic regression results in the specification of smaller 

deviations between configuration distances (

! 

d ) and the disparities (

! 

ˆ d ), thereby minimizing 
the overall stress of the result. When isotonic regression is employed the technique is 
referred to as ‘non-metric multidimensional scaling’. Generally speaking, the greater flexibility 
of the isotonic regression approach will lead to less adjustment of the configuration space, 
and so lower stress values. When applied to the Isle of Wight location data the magnitude of 
this improvement can be appreciated readily (see figs 8 and 9). 
 

 

Figure 8. Non-metric MDS configuration space (k=2) for the Isle of Wight location 
distance data. Closed symbols represent non-metric MDS configuration, open 
symbols represent metric MDS configuration (see Fig. 4). See text for discussion. 
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Figure 9. Shepard diagram for the Isle of Wight non-metric MDS result (k=2). 

 
As can be seen clearly in Figure 8, use of isotonic regression to estimate the final MDS 
configuration space led to different relative positions in over half of the points in the Isle of 
Wight data. While these differences may not seem large, Figure 9 shows they reduced the 
amount of distortion in the overall result by almost 50 percent. Qualitatively speaking, this 
moves the result from the ‘good’ to the ‘excellent’ range. But even more importantly, use of 
the non-metric approach resulted in a better ‘fit’ between the data we have collected and the 
analytic approach we have chosen. This is the real goal we’re after, to have the analysis 
capitalize on the strengths, and compensate for the weaknesses inherent in the data. The fact 
that this match yielded something close to the best possible result is satisfying, but getting a 
‘close-to-perfect’ result isn’t the point of data analysis. Understanding the system of 
observations is.  
 
The example analysis result should not be taken to indicate that non-metric MDS is the 
correct choice for all MDS situations. Far from it. For example, if I had used  straight-line map 
distances between Isle of Wight locations, the metric MDS approach would arguably have 
been more appropriate for those data. Nevertheless, non-metric MDS often represents a the 
best choice for the greatest range of data we typically come across in palaeontology, 
provided our interest is confined to understanding the character of inter-object similarity. 
 
Now we are in a position to apply MDS to our trilobite data. Table 2 represents the Euclidean 
distance matrix calculated from our three trilobite variables. 
 

Table 2. Euclidean distance matrix for trilobite data 
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Acaste 0.00          

Balizoma 8.84 0.00         

Calymene 30.30 38.58 0.00        

Ceraurus 2.60 6.92 31.70 0.00       

Cheirurus 13.32 19.92 20.06 13.67 0.00      

Cybantyx 16.99 24.42 14.90 17.78 5.82 0.00     

Cybeloides 4.64 11.40 27.23 4.75 8.97 13.11 0.00    

Dalmanites 11.22 19.25 19.48 12.38 6.21 6.29 8.11 0.00   

Deiphon 6.40 9.44 30.19 4.81 10.68 15.68 4.01 11.60 0.00  

Ormathops 9.40 1.18 38.79 7.28 19.95 24.47 11.59 19.43 9.39 0.00 

Phacopidina 4.95 8.20 30.76 3.00 11.83 16.31 3.75 11.61 2.25 8.19 
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Phacops 6.29 13.62 25.22 7.03 7.20 11.49 2.75 6.85 5.72 13.90 

Placoparia 16.87 24.88 13.77 18.04 7.26 2.74 13.50 5.92 16.53 25.04 

Pricyclopyge 22.46 29.42 12.48 23.02 10.14 5.69 18.34 11.90 20.39 29.35 

Ptychoparia 40.30 48.78 10.75 41.87 30.76 25.41 37.55 29.60 40.71 49.02 

Rhenops 37.46 45.16 9.44 38.47 26.08 20.82 33.88 26.26 36.44 45.18 

Sphaerexochus 0.91 9.01 29.88 2.41 12.55 16.40 3.83 10.77 5.58 9.51 

Toxochasmops 24.66 32.90 6.26 26.06 14.44 9.93 21.57 14.23 24.46 33.16 

Trimerus 71.39 79.47 41.13 72.66 60.07 55.13 68.07 60.39 70.66 79.58 

Zacanthoides 27.89 35.75 4.75 28.99 16.70 11.42 24.38 16.80 27.05 35.84 
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Phacopidina 0.00          

Phacops 6.22 0.00         

Placoparia 17.00 11.67 0.00        

Pricyclopyge 21.22 16.81 7.29 0.00       

Ptychoparia 41.12 35.62 24.19 22.63 0.00      

Rhenops 37.07 32.18 20.69 16.33 10.18 0.00     

Sphaerexochus 4.30 5.52 16.37 21.83 39.97 36.97 0.00    

Toxochasmops 25.15 19.37 8.51 9.23 16.79 14.73 24.19 0.00   

Trimerus 71.43 66.07 54.62 50.72 32.04 34.78 70.94 46.94 0.00  

Zacanthoides 27.71 22.53 11.03 8.00 14.66 9.81 27.39 5.70 43.74 0.00 
           

 
These are the same data we used to illustrate PCoord analysis and Q-mode factor analysis 
(see Newsletter 61). There, our goal was to represent inter-object similarity relations using 
eigenanalysis-based approaches, which aligned the PCoord and factor spaces with the 
directions of greatest distance (= dissimilarity) across these data as a whole. This time, I’ll use 
MDS to focus the analysis on the more general question of simply representing inter-object 
similarity relations in a low-dimensional space. 
 
Because these distances are based on a small number of variables (m = 3), I’m going to draw 
a flat map of between-object similarity relations by setting dimensionality to 2. What about the 
accuracy of the variables? Here it gets interesting. In order to obtain the body length, glabellar 
length, and glabellar width distances I had to select landmark points on the trilobite images I 
used to obtain the original data. I then measured the Euclidean distances between those 
points. So far so good. But what about the landmark points themselves?   
 
If I’m going to regard my distances as being correct I’ll need to assume there’s no parallax in 
the images. This is certainly incorrect for some if not all. While I have no way of quantifying 
the amount of parallax-based distortion, the most reasonable assumption would be that 
parallax varies across the image set. Also, in order to ensure strict comparability of the 
distances I’d have to know that I always selected the same points on all the specimens. While 
I’m confident I’ve selected approximately the same points, I can’ guarantee I have. I also don’t 
quire understand what ‘same’ means in this context. From a geometric point-of-view the 
points would need to correspond topologically whereas, from a biological point-of-view they 
would need to correspond functionally and/or represent homologous locations. All these 
definitional criteria are valid possibilities, and none need to be the same point. The fact of the 
matter is, in all the confusion of actually collecting the data, I did my best to select 
comparable points, but can’t  really be certain which points I selected, why, or whether 
another person collecting the same data would select exactly the same points and get exactly 
the same distance matrix. Given this, the situation is looking suspiciously close to the Isle of 
Wight road distance data; metric data with varying levels of inconsistency and approximation 
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arising from multiple factors. To be safe, it’s probably better to use a non-metric MDS 
approach. 
 
Figure 10 shows the results of a non-metric MDS analysis of the Table 2 data (k = 2). On the 
same plot I’ve shown the projected positions of the PCoord scores of these same data from 
the Mind Your Rs and Qs column (Newsletter 61) to illustrate the similarities and differences 
between the two approaches.  
 

 

Figure 10. Non-metric MDS configuration space (k=2) for the trilobite distance data 
(Table 2). Closed symbols represent non-metric MDS configuration, open symbols 
represent projected positions PCoord scores fort these same data configuration. See 
text for discussion. 

 
Note how the relative positions of virtually all objects have been adjusted by the MDS 
analysis, some only slightly, but others substantially. For this particular dataset it’s unlikely 
that the interpretation of the PCoord and MDS results would be very different. But recall this is 
a small and very well-behaved dataset. Differences between results for larger, more complex 
data could be much greater, certainly large enough to make a difference in their detailed 
interpretation, possibly sufficient to make a difference to general interpretation. 
 
What about distortion? The Shepard plot for the trilobite non-metric MDS results is shown in 
Figure 11. 
 
 

 

Figure 11. Shepard diagram for the trilobite non-metric MDS result (k=2). 
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The very low value of Kruskal’s Stress (1) index and the high degree of conformance between  
the configuration distance and disparity across the entire range of the distance data provide 
direct conformation of the high quality of the MDS result. For comparison the stress (1) value 
for the PCoord result can also be calculated from the reproduced distance matrix. That value 
(0.103), while acceptable (see above), is markedly suboptimal with respect to the non-metric 
MDS result. 
 
Which distribution of points is correct? They both are! The relative point distributions are 
different because they are providing different information about the data: the PCoord result 
provides information about the distribution of points in a space aligned with the major 
dimensions of object dissimilarity. The MDS result provides information about the overall 
representation of inter-object distance at all scales. Both results have their place in data 
analysis strategies. But the really odd thing is, many data analysts interpret PCoord  and PCA 
results—recalling that a PCoord analysis of a Euclidean distance matrix is the dual of a 
covariance-based PCA—as if they were absolutely accurate representations of overall inter-
object distances. They are not the same and should not be described as such. The MDS 
approach delivers the globally optimised representation to a much greater degree than 
PCA/PCoord. 
 
While I’ve presented MDS as a Q-mode method, it is possible to perform the analysis in the r-
mode as well, though this is much less common. To do this the focus of the regression is the 
r-mode covariance or correlation matrix rather than the Q-mode distance matrix, but in all 
other respect the procedure, and the results in terms of minimizing distortion at all scales, are 
similar. 
 
The origin of the MDS approach can be traced to the work Torgerson (1952, 1958), Shepard 
(1962,1966) and Kruskal (1964a, b), Young (1970) and others with many of the important 
methodological improvements developed at Bell Laboratories (see Green et al. 1989). 
Despite the rarity of its application in systematic and palaeontological contexts (see Rohlf 
1970 for an example), it is used routinely in many other fields, notably in social science, 
psychology, chemistry, and various fields related to economics, marketing, and advertising. 
Its use in these contexts is driven primarily by the need to analyze the datasets containing 
many’ state’ variables (e.g., qualitative comparisons, customer survey results) in a PCA-like, 
non-hierarchical manner. The MDS approach is well-suited to such analyses, which of course 
are not uncommon in a wide range of physical and biological contexts, including 
palaeontology. But what I hope I’ve shown in this essay is that the advantages of MDS are 
much greater than simply being able to handle a wide range of data and produce PCA-like 
plots. The MDS approach focuses on a different, and somewhat more generalized question 
than PCA and other of eigenanalysis-based approaches focus on. It’s a question that’s 
commonly asked of data in our field.  
 
In a larger sense though, all the methods I’ve discussed throughout this column can be 
thought of as ‘multidimensional scaling’ methods. Scaling, in its mathematical sense, refers to 
the act of representing some relation between objects on a numerical axis or scale. Any time 
we compare objects numerically using more than a single variable, we are engaging in an act 
of multidimensional scaling. A better term for the aspect of data analysis most authors refer to 
when they discuss scaling is ‘ordination’ (see Manley 1994). As a consequence of this 
somewhat inconvenient generality of the term scaling, the technical literature on MDS is quite 
complex with different authors drawing the boundary between MDS and ‘not MDS’ 
approaches at different places. Chatfield and Collins (1980) regard PCA as a type of MDS 
whereas Jackson (1991) does not. Both Jackson (1991) and Davis (2002), in turn, regard 
correspondence analysis as a form of MDS, whereas Pielou (1984) does not. Perhaps the 
best way to think of MDS is as the most generalized, and arguably the most accurate, of the 
set of scaling or ordination techniques. It certainly deserves to be much more widely used 
across the broad range of situations encountered in routine palaeontological data analysis. 
 

Norman MacLeod 
Palaeontology Department, The Natural History Museum 

N.MacLeod@nhm.ac.uk 
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Don’t forget the Palaeo-math 101 web page, now at a new home at:  
http://www.palass.org/modules.php?name=palaeo_math&page=1 


