Skip to content Skip to navigation

PhD: A hidden record of early animal evolution? Exploring the Cambrian diversity of acritarchs and small carbonaceous fossils

Project Title

A hidden record of early animal evolution? Exploring the Cambrian diversity of acritarchs and small carbonaceous fossils

Institution

University of Leicester

Supervisors and Institutions

Dr Tom Harvey (Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester; thph2@le.ac.uk) Prof. Mark Williams (Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester; mri@leicester.ac.uk) Dr Brian Pedder (independent) Prof. Sören Jensen (Universidad de Extremadura, Spain) Prof. Teodoro Palacios (Universidad de Extremadura, Spain)

Funding Status

Funding is in competition with other projects and students

Project Description

Project Highlights:

Working with new, undescribed assemblages of exceptionally preserved Cambrian microfossils
Geological fieldwork and sample-collection in Newfoundland, Canada
Using top-of-the-range microscope facilities and working with an international team of expert supervisors

Microfossils offer a rich record of early animal evolution and the attendant reconfiguring of ecosystems. This project will focus on exceptionally well-preserved acritarchs and small carbonaceous fossils (SCFs) to reach a new understanding of how animals dramatically changed the biosphere around half a billion years ago, in the Cambrian evolutionary ‘explosion’. The project aims to discriminate between animal- and non-animal microfossils, and constrain their biological affinities, modes of life, and distributions in space and time. The results will bring key insights into changes in diversity and ecology through a pivotal interval in Earth history.

Acritarchs are organic-walled microfossils of unknown affinity, extracted using standard palynological laboratory techniques. In contrast, more gentle procedures yield larger, more delicate SCFs that represent a range of organisms, including a diversity of animals. Despite this categorization, the two datasets overlap. Recently, we have begun to explore a combined approach, which promises to shed light on the affinities and significance of both acritarchs and SCFs, enhancing their application to key questions in palaeobiology, stratigraphy, and ancient ecosystems.

The project will focus initially on exceptionally well-preserved acritarchs and SCFs from the Forteau Formation of Newfoundland, Canada (Cambrian Stage 4, c. 510 million years ago). Hundreds of SCFs and thousands of acritarchs have already been prepared onto glass slides for analysis. In light of the SCFs, some palynomorphs are clearly derived from animals including arthropods, priapulid worms, and the slug-like Wiwaxia. Others remain enigmatic, such as the conical acritarchs known as Ceratophyton and Corollasphaeridium, which could represent animals or perhaps protists. At the same time, SCF-processing yields clumps, articulated arrays, and even faecal-pellets full of acritarchs, constraining their biological interpretation. Therefore, the Forteau material offers an unrivalled opportunity to resolve the affinities and ecologies of otherwise mysterious Cambrian microfossils. Any insights can then be applied more widely to help constrain the largest-scale patterns and processes of the Cambrian ‘explosion’. For example, do animal-derived microfossils extend back into the Ediacaran? Can acritarchs tell us about the structure of the plankton? And how did ecosystems respond to major events in evolution?

Contact Name

Tom Harvey

Contact Email

Link to More Information

Closing Date

Friday, January 10, 2020

Expiry Date

Saturday, January 11, 2020
PalAss Go! URL: http://go.palass.org/knp | Twitter: Share on Twitter | Facebook: Share on Facebook | Google+: Share on Google+